1 Scope of the Report
1.1 Market Introduction
1.2 Years Considered
1.3 Research Objectives
1.4 Market Research Methodology
1.5 Research Process and Data Source
1.6 Economic Indicators
1.7 Currency Considered
1.8 Market Estimation Caveats
2 Executive Summary
2.1 World Market Overview
2.1.1 Global Rare Earth Hydrogen Storage Alloy Electrode Material Annual Sales 2018-2029
2.1.2 World Current & Future Analysis for Rare Earth Hydrogen Storage Alloy Electrode Material by Geographic Region, 2018, 2022 & 2029
2.1.3 World Current & Future Analysis for Rare Earth Hydrogen Storage Alloy Electrode Material by Country/Region, 2018, 2022 & 2029
2.2 Rare Earth Hydrogen Storage Alloy Electrode Material Segment by Type
2.2.1 AB5 Type
2.2.2 A2B7 Type
2.2.3 AB3 Type
2.2.4 Others
2.3 Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Type
2.3.1 Global Rare Earth Hydrogen Storage Alloy Electrode Material Sales Market Share by Type (2018-2023)
2.3.2 Global Rare Earth Hydrogen Storage Alloy Electrode Material Revenue and Market Share by Type (2018-2023)
2.3.3 Global Rare Earth Hydrogen Storage Alloy Electrode Material Sale Price by Type (2018-2023)
2.4 Rare Earth Hydrogen Storage Alloy Electrode Material Segment by Application
2.4.1 Automobile
2.4.2 Industrials
2.4.3 Others
2.5 Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Application
2.5.1 Global Rare Earth Hydrogen Storage Alloy Electrode Material Sale Market Share by Application (2018-2023)
2.5.2 Global Rare Earth Hydrogen Storage Alloy Electrode Material Revenue and Market Share by Application (2018-2023)
2.5.3 Global Rare Earth Hydrogen Storage Alloy Electrode Material Sale Price by Application (2018-2023)
3 Global Rare Earth Hydrogen Storage Alloy Electrode Material by Company
3.1 Global Rare Earth Hydrogen Storage Alloy Electrode Material Breakdown Data by Company
3.1.1 Global Rare Earth Hydrogen Storage Alloy Electrode Material Annual Sales by Company (2018-2023)
3.1.2 Global Rare Earth Hydrogen Storage Alloy Electrode Material Sales Market Share by Company (2018-2023)
3.2 Global Rare Earth Hydrogen Storage Alloy Electrode Material Annual Revenue by Company (2018-2023)
3.2.1 Global Rare Earth Hydrogen Storage Alloy Electrode Material Revenue by Company (2018-2023)
3.2.2 Global Rare Earth Hydrogen Storage Alloy Electrode Material Revenue Market Share by Company (2018-2023)
3.3 Global Rare Earth Hydrogen Storage Alloy Electrode Material Sale Price by Company
3.4 Key Manufacturers Rare Earth Hydrogen Storage Alloy Electrode Material Producing Area Distribution, Sales Area, Product Type
3.4.1 Key Manufacturers Rare Earth Hydrogen Storage Alloy Electrode Material Product Location Distribution
3.4.2 Players Rare Earth Hydrogen Storage Alloy Electrode Material Products Offered
3.5 Market Concentration Rate Analysis
3.5.1 Competition Landscape Analysis
3.5.2 Concentration Ratio (CR3, CR5 and CR10) & (2018-2023)
3.6 New Products and Potential Entrants
3.7 Mergers & Acquisitions, Expansion
4 World Historic Review for Rare Earth Hydrogen Storage Alloy Electrode Material by Geographic Region
4.1 World Historic Rare Earth Hydrogen Storage Alloy Electrode Material Market Size by Geographic Region (2018-2023)
4.1.1 Global Rare Earth Hydrogen Storage Alloy Electrode Material Annual Sales by Geographic Region (2018-2023)
4.1.2 Global Rare Earth Hydrogen Storage Alloy Electrode Material Annual Revenue by Geographic Region (2018-2023)
4.2 World Historic Rare Earth Hydrogen Storage Alloy Electrode Material Market Size by Country/Region (2018-2023)
4.2.1 Global Rare Earth Hydrogen Storage Alloy Electrode Material Annual Sales by Country/Region (2018-2023)
4.2.2 Global Rare Earth Hydrogen Storage Alloy Electrode Material Annual Revenue by Country/Region (2018-2023)
4.3 Americas Rare Earth Hydrogen Storage Alloy Electrode Material Sales Growth
4.4 APAC Rare Earth Hydrogen Storage Alloy Electrode Material Sales Growth
4.5 Europe Rare Earth Hydrogen Storage Alloy Electrode Material Sales Growth
4.6 Middle East & Africa Rare Earth Hydrogen Storage Alloy Electrode Material Sales Growth
5 Americas
5.1 Americas Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Country
5.1.1 Americas Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Country (2018-2023)
5.1.2 Americas Rare Earth Hydrogen Storage Alloy Electrode Material Revenue by Country (2018-2023)
5.2 Americas Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Type
5.3 Americas Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Application
5.4 United States
5.5 Canada
5.6 Mexico
5.7 Brazil
6 APAC
6.1 APAC Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Region
6.1.1 APAC Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Region (2018-2023)
6.1.2 APAC Rare Earth Hydrogen Storage Alloy Electrode Material Revenue by Region (2018-2023)
6.2 APAC Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Type
6.3 APAC Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Application
6.4 China
6.5 Japan
6.6 South Korea
6.7 Southeast Asia
6.8 India
6.9 Australia
6.10 China Taiwan
7 Europe
7.1 Europe Rare Earth Hydrogen Storage Alloy Electrode Material by Country
7.1.1 Europe Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Country (2018-2023)
7.1.2 Europe Rare Earth Hydrogen Storage Alloy Electrode Material Revenue by Country (2018-2023)
7.2 Europe Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Type
7.3 Europe Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Application
7.4 Germany
7.5 France
7.6 UK
7.7 Italy
7.8 Russia
8 Middle East & Africa
8.1 Middle East & Africa Rare Earth Hydrogen Storage Alloy Electrode Material by Country
8.1.1 Middle East & Africa Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Country (2018-2023)
8.1.2 Middle East & Africa Rare Earth Hydrogen Storage Alloy Electrode Material Revenue by Country (2018-2023)
8.2 Middle East & Africa Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Type
8.3 Middle East & Africa Rare Earth Hydrogen Storage Alloy Electrode Material Sales by Application
8.4 Egypt
8.5 South Africa
8.6 Israel
8.7 Turkey
8.8 GCC Countries
9 Market Drivers, Challenges and Trends
9.1 Market Drivers & Growth Opportunities
9.2 Market Challenges & Risks
9.3 Industry Trends
10 Manufacturing Cost Structure Analysis
10.1 Raw Material and Suppliers
10.2 Manufacturing Cost Structure Analysis of Rare Earth Hydrogen Storage Alloy Electrode Material
10.3 Manufacturing Process Analysis of Rare Earth Hydrogen Storage Alloy Electrode Material
10.4 Industry Chain Structure of Rare Earth Hydrogen Storage Alloy Electrode Material
11 Marketing, Distributors and Customer
11.1 Sales Channel
11.1.1 Direct Channels
11.1.2 Indirect Channels
11.2 Rare Earth Hydrogen Storage Alloy Electrode Material Distributors
11.3 Rare Earth Hydrogen Storage Alloy Electrode Material Customer
12 World Forecast Review for Rare Earth Hydrogen Storage Alloy Electrode Material by Geographic Region
12.1 Global Rare Earth Hydrogen Storage Alloy Electrode Material Market Size Forecast by Region
12.1.1 Global Rare Earth Hydrogen Storage Alloy Electrode Material Forecast by Region (2024-2029)
12.1.2 Global Rare Earth Hydrogen Storage Alloy Electrode Material Annual Revenue Forecast by Region (2024-2029)
12.2 Americas Forecast by Country
12.3 APAC Forecast by Region
12.4 Europe Forecast by Country
12.5 Middle East & Africa Forecast by Country
12.6 Global Rare Earth Hydrogen Storage Alloy Electrode Material Forecast by Type
12.7 Global Rare Earth Hydrogen Storage Alloy Electrode Material Forecast by Application
13 Key Players Analysis
13.1 Mitsui Mining & Smelting Co., Ltd.
13.1.1 Mitsui Mining & Smelting Co., Ltd. Company Information
13.1.2 Mitsui Mining & Smelting Co., Ltd. Rare Earth Hydrogen Storage Alloy Electrode Material Product Portfolios and Specifications
13.1.3 Mitsui Mining & Smelting Co., Ltd. Rare Earth Hydrogen Storage Alloy Electrode Material Sales, Revenue, Price and Gross Margin (2018-2023)
13.1.4 Mitsui Mining & Smelting Co., Ltd. Main Business Overview
13.1.5 Mitsui Mining & Smelting Co., Ltd. Latest Developments
13.2 Santoku Corporation
13.2.1 Santoku Corporation Company Information
13.2.2 Santoku Corporation Rare Earth Hydrogen Storage Alloy Electrode Material Product Portfolios and Specifications
13.2.3 Santoku Corporation Rare Earth Hydrogen Storage Alloy Electrode Material Sales, Revenue, Price and Gross Margin (2018-2023)
13.2.4 Santoku Corporation Main Business Overview
13.2.5 Santoku Corporation Latest Developments
13.3 Zhongke Xuanda New Energy Technology Co., Ltd.
13.3.1 Zhongke Xuanda New Energy Technology Co., Ltd. Company Information
13.3.2 Zhongke Xuanda New Energy Technology Co., Ltd. Rare Earth Hydrogen Storage Alloy Electrode Material Product Portfolios and Specifications
13.3.3 Zhongke Xuanda New Energy Technology Co., Ltd. Rare Earth Hydrogen Storage Alloy Electrode Material Sales, Revenue, Price and Gross Margin (2018-2023)
13.3.4 Zhongke Xuanda New Energy Technology Co., Ltd. Main Business Overview
13.3.5 Zhongke Xuanda New Energy Technology Co., Ltd. Latest Developments
13.4 Nippon Denko Co., Ltd.
13.4.1 Nippon Denko Co., Ltd. Company Information
13.4.2 Nippon Denko Co., Ltd. Rare Earth Hydrogen Storage Alloy Electrode Material Product Portfolios and Specifications
13.4.3 Nippon Denko Co., Ltd. Rare Earth Hydrogen Storage Alloy Electrode Material Sales, Revenue, Price and Gross Margin (2018-2023)
13.4.4 Nippon Denko Co., Ltd. Main Business Overview
13.4.5 Nippon Denko Co., Ltd. Latest Developments
13.5 Japan Metals & Chemicals Co., Ltd.
13.5.1 Japan Metals & Chemicals Co., Ltd. Company Information
13.5.2 Japan Metals & Chemicals Co., Ltd. Rare Earth Hydrogen Storage Alloy Electrode Material Product Portfolios and Specifications
13.5.3 Japan Metals & Chemicals Co., Ltd. Rare Earth Hydrogen Storage Alloy Electrode Material Sales, Revenue, Price and Gross Margin (2018-2023)
13.5.4 Japan Metals & Chemicals Co., Ltd. Main Business Overview
13.5.5 Japan Metals & Chemicals Co., Ltd. Latest Developments
13.6 Eutectix
13.6.1 Eutectix Company Information
13.6.2 Eutectix Rare Earth Hydrogen Storage Alloy Electrode Material Product Portfolios and Specifications
13.6.3 Eutectix Rare Earth Hydrogen Storage Alloy Electrode Material Sales, Revenue, Price and Gross Margin (2018-2023)
13.6.4 Eutectix Main Business Overview
13.6.5 Eutectix Latest Developments
13.7 Whole Win (Beijing) Materials Science and Technology Company Limited
13.7.1 Whole Win (Beijing) Materials Science and Technology Company Limited Company Information
13.7.2 Whole Win (Beijing) Materials Science and Technology Company Limited Rare Earth Hydrogen Storage Alloy Electrode Material Product Portfolios and Specifications
13.7.3 Whole Win (Beijing) Materials Science and Technology Company Limited Rare Earth Hydrogen Storage Alloy Electrode Material Sales, Revenue, Price and Gross Margin (2018-2023)
13.7.4 Whole Win (Beijing) Materials Science and Technology Company Limited Main Business Overview
13.7.5 Whole Win (Beijing) Materials Science and Technology Company Limited Latest Developments
13.8 Ajax TOCCO Magnethermic
13.8.1 Ajax TOCCO Magnethermic Company Information
13.8.2 Ajax TOCCO Magnethermic Rare Earth Hydrogen Storage Alloy Electrode Material Product Portfolios and Specifications
13.8.3 Ajax TOCCO Magnethermic Rare Earth Hydrogen Storage Alloy Electrode Material Sales, Revenue, Price and Gross Margin (2018-2023)
13.8.4 Ajax TOCCO Magnethermic Main Business Overview
13.8.5 Ajax TOCCO Magnethermic Latest Developments
14 Research Findings and Conclusion
※参考情報 希土類系水素吸蔵合金電極材料は、近年のエネルギー問題や環境問題の解決策として注目を集めています。この材料は特に水素貯蔵および電池技術において重要な役割を果たしています。そのため、本稿では、希土類系水素吸蔵合金の概念について、定義、特徴、種類、用途、関連技術などを解説します。 まず、希土類系水素吸蔵合金の定義について考えます。希土類金属とは周期表の中で、セリウムからルテニウムまでの元素群を指し、これらの元素は特有の化学的特性を持ちます。水素吸蔵合金は水素を吸収する能力を持つ合金であり、主に水素化合物として存在します。この合金は、次第に水素を取り込み、また必要に応じて水素を放出する特性を持ち、水素エネルギーの効率的な貯蔵と供給が可能となります。 希土類系水素吸蔵合金の特徴については、まず高い水素貯蔵能力が挙げられます。この合金は多くの水素を吸収でき、その多くは常温常圧で安定しています。また、耐熱性にも優れているため、高温環境下でも水素の吸収・放出が可能です。さらに、これらの合金は長寿命を持ち、充放電サイクルの繰り返しに対して非常に耐性があります。これにより、実用性においても優れた特性を有することが確立されています。 次に、希土類系水素吸蔵合金の種類について述べます。一般的には、ニオブ、タリウム、鍶、ルビジウムなどの金属と、希土類金属を組み合わせた合金が用いられます。これらの合金は組成によって異なる特性を示し、それぞれが異なる用途に適しています。例えば、LaNi5という合金は、輪状の構造を持ち、典型的な水素貯蔵材料として広く利用されています。また、Ce2Ni7系合金やMmNi5系合金等もおり、これらはそれぞれ異なる貯蔵効率と放出特性を持っています。 用途に関しては、最も代表的なものが水素貯蔵メディアとしての役割です。水素自動車や燃料電池の開発が促進される中、希土類系水素吸蔵合金はそのコアコンポーネントとして重要視されています。また、エネルギー貯蔵システムや移動型発電装置の部品としても利用されており、特に持続可能なエネルギーの確保には欠かせない存在です。さらに、希土類系水素吸蔵合金は、熱エネルギーの蓄積や冷却技術、さらには医療機器における水素センサーとしても活用されています。 最後に、関連技術について触れてみましょう。希土類系水素吸蔵合金の開発は、多くの技術的進展と密接に関連しています。例えば、合金の製造方法やそれに使用される材料の研究が進んでおり、新たな合金組成の特性を解明するための実験的手法やシミュレーションが行われています。また、ナノテクノロジーの適用によって、合金の性能を向上させる試みも進められています。さらに、新しいグリーンテクノロジーによる製造プロセスの開発が進み、環境負荷を軽減しながら、水素吸蔵合金の製造効率を向上させるための研究も行われています。 希土類系水素吸蔵合金電極材料は、環境に優しく持続可能なエネルギー供給の実現に向けた重要な要素とされています。水素エネルギーの普及は、化石燃料からの移行やCO2排出削減を実現する手段として期待されており、その中心的な役割を担うのがこの合金です。今後も希土類系水素吸蔵合金の研究開発が進むことで、さらに効率的で持続可能なエネルギーシステムの実現が期待されています。 |