1 Scope of the Report
1.1 Market Introduction
1.2 Years Considered
1.3 Research Objectives
1.4 Market Research Methodology
1.5 Research Process and Data Source
1.6 Economic Indicators
1.7 Currency Considered
1.8 Market Estimation Caveats
2 Executive Summary
2.1 World Market Overview
2.1.1 Global Hydrogen Storage Alloys for Batteries Annual Sales 2018-2029
2.1.2 World Current & Future Analysis for Hydrogen Storage Alloys for Batteries by Geographic Region, 2018, 2022 & 2029
2.1.3 World Current & Future Analysis for Hydrogen Storage Alloys for Batteries by Country/Region, 2018, 2022 & 2029
2.2 Hydrogen Storage Alloys for Batteries Segment by Type
2.2.1 Mixed Rare Earth Type
2.2.2 Single Rare Earth Type
2.2.3 Others
2.3 Hydrogen Storage Alloys for Batteries Sales by Type
2.3.1 Global Hydrogen Storage Alloys for Batteries Sales Market Share by Type (2018-2023)
2.3.2 Global Hydrogen Storage Alloys for Batteries Revenue and Market Share by Type (2018-2023)
2.3.3 Global Hydrogen Storage Alloys for Batteries Sale Price by Type (2018-2023)
2.4 Hydrogen Storage Alloys for Batteries Segment by Application
2.4.1 Ni-MH Power Battery
2.4.2 Solid State Hydrogen Storage Battery
2.4.3 Hydrogen Fuel Cell
2.5 Hydrogen Storage Alloys for Batteries Sales by Application
2.5.1 Global Hydrogen Storage Alloys for Batteries Sale Market Share by Application (2018-2023)
2.5.2 Global Hydrogen Storage Alloys for Batteries Revenue and Market Share by Application (2018-2023)
2.5.3 Global Hydrogen Storage Alloys for Batteries Sale Price by Application (2018-2023)
3 Global Hydrogen Storage Alloys for Batteries by Company
3.1 Global Hydrogen Storage Alloys for Batteries Breakdown Data by Company
3.1.1 Global Hydrogen Storage Alloys for Batteries Annual Sales by Company (2018-2023)
3.1.2 Global Hydrogen Storage Alloys for Batteries Sales Market Share by Company (2018-2023)
3.2 Global Hydrogen Storage Alloys for Batteries Annual Revenue by Company (2018-2023)
3.2.1 Global Hydrogen Storage Alloys for Batteries Revenue by Company (2018-2023)
3.2.2 Global Hydrogen Storage Alloys for Batteries Revenue Market Share by Company (2018-2023)
3.3 Global Hydrogen Storage Alloys for Batteries Sale Price by Company
3.4 Key Manufacturers Hydrogen Storage Alloys for Batteries Producing Area Distribution, Sales Area, Product Type
3.4.1 Key Manufacturers Hydrogen Storage Alloys for Batteries Product Location Distribution
3.4.2 Players Hydrogen Storage Alloys for Batteries Products Offered
3.5 Market Concentration Rate Analysis
3.5.1 Competition Landscape Analysis
3.5.2 Concentration Ratio (CR3, CR5 and CR10) & (2018-2023)
3.6 New Products and Potential Entrants
3.7 Mergers & Acquisitions, Expansion
4 World Historic Review for Hydrogen Storage Alloys for Batteries by Geographic Region
4.1 World Historic Hydrogen Storage Alloys for Batteries Market Size by Geographic Region (2018-2023)
4.1.1 Global Hydrogen Storage Alloys for Batteries Annual Sales by Geographic Region (2018-2023)
4.1.2 Global Hydrogen Storage Alloys for Batteries Annual Revenue by Geographic Region (2018-2023)
4.2 World Historic Hydrogen Storage Alloys for Batteries Market Size by Country/Region (2018-2023)
4.2.1 Global Hydrogen Storage Alloys for Batteries Annual Sales by Country/Region (2018-2023)
4.2.2 Global Hydrogen Storage Alloys for Batteries Annual Revenue by Country/Region (2018-2023)
4.3 Americas Hydrogen Storage Alloys for Batteries Sales Growth
4.4 APAC Hydrogen Storage Alloys for Batteries Sales Growth
4.5 Europe Hydrogen Storage Alloys for Batteries Sales Growth
4.6 Middle East & Africa Hydrogen Storage Alloys for Batteries Sales Growth
5 Americas
5.1 Americas Hydrogen Storage Alloys for Batteries Sales by Country
5.1.1 Americas Hydrogen Storage Alloys for Batteries Sales by Country (2018-2023)
5.1.2 Americas Hydrogen Storage Alloys for Batteries Revenue by Country (2018-2023)
5.2 Americas Hydrogen Storage Alloys for Batteries Sales by Type
5.3 Americas Hydrogen Storage Alloys for Batteries Sales by Application
5.4 United States
5.5 Canada
5.6 Mexico
5.7 Brazil
6 APAC
6.1 APAC Hydrogen Storage Alloys for Batteries Sales by Region
6.1.1 APAC Hydrogen Storage Alloys for Batteries Sales by Region (2018-2023)
6.1.2 APAC Hydrogen Storage Alloys for Batteries Revenue by Region (2018-2023)
6.2 APAC Hydrogen Storage Alloys for Batteries Sales by Type
6.3 APAC Hydrogen Storage Alloys for Batteries Sales by Application
6.4 China
6.5 Japan
6.6 South Korea
6.7 Southeast Asia
6.8 India
6.9 Australia
6.10 China Taiwan
7 Europe
7.1 Europe Hydrogen Storage Alloys for Batteries by Country
7.1.1 Europe Hydrogen Storage Alloys for Batteries Sales by Country (2018-2023)
7.1.2 Europe Hydrogen Storage Alloys for Batteries Revenue by Country (2018-2023)
7.2 Europe Hydrogen Storage Alloys for Batteries Sales by Type
7.3 Europe Hydrogen Storage Alloys for Batteries Sales by Application
7.4 Germany
7.5 France
7.6 UK
7.7 Italy
7.8 Russia
8 Middle East & Africa
8.1 Middle East & Africa Hydrogen Storage Alloys for Batteries by Country
8.1.1 Middle East & Africa Hydrogen Storage Alloys for Batteries Sales by Country (2018-2023)
8.1.2 Middle East & Africa Hydrogen Storage Alloys for Batteries Revenue by Country (2018-2023)
8.2 Middle East & Africa Hydrogen Storage Alloys for Batteries Sales by Type
8.3 Middle East & Africa Hydrogen Storage Alloys for Batteries Sales by Application
8.4 Egypt
8.5 South Africa
8.6 Israel
8.7 Turkey
8.8 GCC Countries
9 Market Drivers, Challenges and Trends
9.1 Market Drivers & Growth Opportunities
9.2 Market Challenges & Risks
9.3 Industry Trends
10 Manufacturing Cost Structure Analysis
10.1 Raw Material and Suppliers
10.2 Manufacturing Cost Structure Analysis of Hydrogen Storage Alloys for Batteries
10.3 Manufacturing Process Analysis of Hydrogen Storage Alloys for Batteries
10.4 Industry Chain Structure of Hydrogen Storage Alloys for Batteries
11 Marketing, Distributors and Customer
11.1 Sales Channel
11.1.1 Direct Channels
11.1.2 Indirect Channels
11.2 Hydrogen Storage Alloys for Batteries Distributors
11.3 Hydrogen Storage Alloys for Batteries Customer
12 World Forecast Review for Hydrogen Storage Alloys for Batteries by Geographic Region
12.1 Global Hydrogen Storage Alloys for Batteries Market Size Forecast by Region
12.1.1 Global Hydrogen Storage Alloys for Batteries Forecast by Region (2024-2029)
12.1.2 Global Hydrogen Storage Alloys for Batteries Annual Revenue Forecast by Region (2024-2029)
12.2 Americas Forecast by Country
12.3 APAC Forecast by Region
12.4 Europe Forecast by Country
12.5 Middle East & Africa Forecast by Country
12.6 Global Hydrogen Storage Alloys for Batteries Forecast by Type
12.7 Global Hydrogen Storage Alloys for Batteries Forecast by Application
13 Key Players Analysis
13.1 Mitsui Mining & Smelting Co., Ltd.
13.1.1 Mitsui Mining & Smelting Co., Ltd. Company Information
13.1.2 Mitsui Mining & Smelting Co., Ltd. Hydrogen Storage Alloys for Batteries Product Portfolios and Specifications
13.1.3 Mitsui Mining & Smelting Co., Ltd. Hydrogen Storage Alloys for Batteries Sales, Revenue, Price and Gross Margin (2018-2023)
13.1.4 Mitsui Mining & Smelting Co., Ltd. Main Business Overview
13.1.5 Mitsui Mining & Smelting Co., Ltd. Latest Developments
13.2 Santoku Corporation
13.2.1 Santoku Corporation Company Information
13.2.2 Santoku Corporation Hydrogen Storage Alloys for Batteries Product Portfolios and Specifications
13.2.3 Santoku Corporation Hydrogen Storage Alloys for Batteries Sales, Revenue, Price and Gross Margin (2018-2023)
13.2.4 Santoku Corporation Main Business Overview
13.2.5 Santoku Corporation Latest Developments
13.3 Nippon Denko Co., Ltd.
13.3.1 Nippon Denko Co., Ltd. Company Information
13.3.2 Nippon Denko Co., Ltd. Hydrogen Storage Alloys for Batteries Product Portfolios and Specifications
13.3.3 Nippon Denko Co., Ltd. Hydrogen Storage Alloys for Batteries Sales, Revenue, Price and Gross Margin (2018-2023)
13.3.4 Nippon Denko Co., Ltd. Main Business Overview
13.3.5 Nippon Denko Co., Ltd. Latest Developments
13.4 Japan Metals & Chemicals Co., Ltd.
13.4.1 Japan Metals & Chemicals Co., Ltd. Company Information
13.4.2 Japan Metals & Chemicals Co., Ltd. Hydrogen Storage Alloys for Batteries Product Portfolios and Specifications
13.4.3 Japan Metals & Chemicals Co., Ltd. Hydrogen Storage Alloys for Batteries Sales, Revenue, Price and Gross Margin (2018-2023)
13.4.4 Japan Metals & Chemicals Co., Ltd. Main Business Overview
13.4.5 Japan Metals & Chemicals Co., Ltd. Latest Developments
13.5 Eutectix
13.5.1 Eutectix Company Information
13.5.2 Eutectix Hydrogen Storage Alloys for Batteries Product Portfolios and Specifications
13.5.3 Eutectix Hydrogen Storage Alloys for Batteries Sales, Revenue, Price and Gross Margin (2018-2023)
13.5.4 Eutectix Main Business Overview
13.5.5 Eutectix Latest Developments
13.6 HBank Technologies
13.6.1 HBank Technologies Company Information
13.6.2 HBank Technologies Hydrogen Storage Alloys for Batteries Product Portfolios and Specifications
13.6.3 HBank Technologies Hydrogen Storage Alloys for Batteries Sales, Revenue, Price and Gross Margin (2018-2023)
13.6.4 HBank Technologies Main Business Overview
13.6.5 HBank Technologies Latest Developments
13.7 Sigma-Aldrich
13.7.1 Sigma-Aldrich Company Information
13.7.2 Sigma-Aldrich Hydrogen Storage Alloys for Batteries Product Portfolios and Specifications
13.7.3 Sigma-Aldrich Hydrogen Storage Alloys for Batteries Sales, Revenue, Price and Gross Margin (2018-2023)
13.7.4 Sigma-Aldrich Main Business Overview
13.7.5 Sigma-Aldrich Latest Developments
13.8 Xiamen Tungsten
13.8.1 Xiamen Tungsten Company Information
13.8.2 Xiamen Tungsten Hydrogen Storage Alloys for Batteries Product Portfolios and Specifications
13.8.3 Xiamen Tungsten Hydrogen Storage Alloys for Batteries Sales, Revenue, Price and Gross Margin (2018-2023)
13.8.4 Xiamen Tungsten Main Business Overview
13.8.5 Xiamen Tungsten Latest Developments
13.9 Antai Chuangming Advanced Energy Materials
13.9.1 Antai Chuangming Advanced Energy Materials Company Information
13.9.2 Antai Chuangming Advanced Energy Materials Hydrogen Storage Alloys for Batteries Product Portfolios and Specifications
13.9.3 Antai Chuangming Advanced Energy Materials Hydrogen Storage Alloys for Batteries Sales, Revenue, Price and Gross Margin (2018-2023)
13.9.4 Antai Chuangming Advanced Energy Materials Main Business Overview
13.9.5 Antai Chuangming Advanced Energy Materials Latest Developments
13.10 Whole Win (Beijing) Materials Sci. & Tech.
13.10.1 Whole Win (Beijing) Materials Sci. & Tech. Company Information
13.10.2 Whole Win (Beijing) Materials Sci. & Tech. Hydrogen Storage Alloys for Batteries Product Portfolios and Specifications
13.10.3 Whole Win (Beijing) Materials Sci. & Tech. Hydrogen Storage Alloys for Batteries Sales, Revenue, Price and Gross Margin (2018-2023)
13.10.4 Whole Win (Beijing) Materials Sci. & Tech. Main Business Overview
13.10.5 Whole Win (Beijing) Materials Sci. & Tech. Latest Developments
13.11 Baotou Zhongke Xuanda New Energy
13.11.1 Baotou Zhongke Xuanda New Energy Company Information
13.11.2 Baotou Zhongke Xuanda New Energy Hydrogen Storage Alloys for Batteries Product Portfolios and Specifications
13.11.3 Baotou Zhongke Xuanda New Energy Hydrogen Storage Alloys for Batteries Sales, Revenue, Price and Gross Margin (2018-2023)
13.11.4 Baotou Zhongke Xuanda New Energy Main Business Overview
13.11.5 Baotou Zhongke Xuanda New Energy Latest Developments
14 Research Findings and Conclusion
※参考情報 電池用水素吸蔵合金は、特定の物理的および化学的特性を持つ合金であり、主に水素を高密度で貯蔵するために使用されます。これらの合金は、電池技術において非常に重要な役割を果たしており、特にニッケル水素電池(NiMH)などの再充電可能な電池においてシステムのエネルギー密度を向上させるために利用されています。 水素吸蔵合金の主な定義は、一定の条件下で水素を吸収および放出する能力を持つ金属の合金です。水素はエネルギー源として非常にクリーンで、燃焼時に二酸化炭素を発生しないため、持続可能なエネルギーシステムの構築において注目されています。このような背景から、水素を効率的に貯蔵し供給するための技術が求められています。 水素吸蔵合金の特徴としては、まずその高い水素吸収能力が挙げられます。これにより、比較的小さな体積で大量の水素を貯蔵することが可能になり、エネルギー密度が大幅に向上します。また、これらの合金は、相対的に安定な化学的性質を持ち、他の材料に比べて水素を効率的に放出できる特性があります。さらに、温度や圧力の変化に応じて水素吸収および放出が行われるため、使用条件に合わせて設計することが可能です。 水素吸蔵合金にはさまざまな種類があります。主に、金属水素化物と呼ばれるタイプが一般的です。これには、ラナタニウム系合金やニッケル系合金、マグネシウム系合金などが含まれ、各種元素の組み合わせによって特性が異なります。たとえば、ラナタニウム系合金は高い水素容量を持つ一方で、高コストが課題となります。ニッケル系合金は、コストパフォーマンスに優れ、多くの商業用電池に使用されています。 用途としては、水素吸蔵合金は主に電池技術に利用されるだけでなく、燃料電池技術にも採用されています。電気自動車(EV)やハイブリッド車(HV)においては、エネルギーの貯蔵および供給の効率を高めるために不可欠な技術です。また、再生可能エネルギーの分野でも、水素を貯蔵するための手段として水素吸蔵合金が利用されることが期待されています。 関連技術としては、電池管理システム(BMS)や水素リサイクル技術、さらにはナノ材料技術が挙げられます。これらの技術は、水素の利用効率を高め、電池寿命を延ばすために重要です。電池管理システムは、合金の水素吸収・放出状態をモニタリングし、最適な運用条件を提供することで、全体の効率を向上させる役割を担います。 さらに、最近の研究では、新たな合金材料や合金の表面改良技術などが進められており、これにより水素吸蔵特性が向上しています。例えば、ナノスケールの構造改良を行うことで、合金の表面積を増加させ、より効率的な水素吸収を実現することが可能です。このような技術革新は、エネルギー問題の解決に向けた重要なステップと位置づけられています。 水素吸蔵合金についての知識は、持続可能なエネルギーシステムの構築においてますます重要性を増しており、未来のエネルギーそして環境問題解決に向けた鍵となる要素です。各国が直面しているエネルギー問題に対し、水素吸蔵合金は一つの有力な解決策を提供する可能性を秘めています。そのため、今後もさらなる研究開発が進められ、より効率的でコスト効果の高い技術が実現されることが期待されています。 |