1 Scope of the Report
1.1 Market Introduction
1.2 Years Considered
1.3 Research Objectives
1.4 Market Research Methodology
1.5 Research Process and Data Source
1.6 Economic Indicators
1.7 Currency Considered
1.8 Market Estimation Caveats
2 Executive Summary
2.1 World Market Overview
2.1.1 Global Inorganic Scnhillators Annual Sales 2018-2029
2.1.2 World Current & Future Analysis for Inorganic Scnhillators by Geographic Region, 2018, 2022 & 2029
2.1.3 World Current & Future Analysis for Inorganic Scnhillators by Country/Region, 2018, 2022 & 2029
2.2 Inorganic Scnhillators Segment by Type
2.2.1 Sodium Iodide (NAI)
2.2.2 Cesium Iodide (CEI)
2.2.3 Gadolinium Oxysulfide (GOS)
2.2.4 Others
2.3 Inorganic Scnhillators Sales by Type
2.3.1 Global Inorganic Scnhillators Sales Market Share by Type (2018-2023)
2.3.2 Global Inorganic Scnhillators Revenue and Market Share by Type (2018-2023)
2.3.3 Global Inorganic Scnhillators Sale Price by Type (2018-2023)
2.4 Inorganic Scnhillators Segment by Application
2.4.1 Healthcare
2.4.2 Nuclear Power Plant
2.4.3 Industrial
2.4.4 Homeland Security & Defense
2.4.5 Others
2.5 Inorganic Scnhillators Sales by Application
2.5.1 Global Inorganic Scnhillators Sale Market Share by Application (2018-2023)
2.5.2 Global Inorganic Scnhillators Revenue and Market Share by Application (2018-2023)
2.5.3 Global Inorganic Scnhillators Sale Price by Application (2018-2023)
3 Global Inorganic Scnhillators by Company
3.1 Global Inorganic Scnhillators Breakdown Data by Company
3.1.1 Global Inorganic Scnhillators Annual Sales by Company (2018-2023)
3.1.2 Global Inorganic Scnhillators Sales Market Share by Company (2018-2023)
3.2 Global Inorganic Scnhillators Annual Revenue by Company (2018-2023)
3.2.1 Global Inorganic Scnhillators Revenue by Company (2018-2023)
3.2.2 Global Inorganic Scnhillators Revenue Market Share by Company (2018-2023)
3.3 Global Inorganic Scnhillators Sale Price by Company
3.4 Key Manufacturers Inorganic Scnhillators Producing Area Distribution, Sales Area, Product Type
3.4.1 Key Manufacturers Inorganic Scnhillators Product Location Distribution
3.4.2 Players Inorganic Scnhillators Products Offered
3.5 Market Concentration Rate Analysis
3.5.1 Competition Landscape Analysis
3.5.2 Concentration Ratio (CR3, CR5 and CR10) & (2018-2023)
3.6 New Products and Potential Entrants
3.7 Mergers & Acquisitions, Expansion
4 World Historic Review for Inorganic Scnhillators by Geographic Region
4.1 World Historic Inorganic Scnhillators Market Size by Geographic Region (2018-2023)
4.1.1 Global Inorganic Scnhillators Annual Sales by Geographic Region (2018-2023)
4.1.2 Global Inorganic Scnhillators Annual Revenue by Geographic Region (2018-2023)
4.2 World Historic Inorganic Scnhillators Market Size by Country/Region (2018-2023)
4.2.1 Global Inorganic Scnhillators Annual Sales by Country/Region (2018-2023)
4.2.2 Global Inorganic Scnhillators Annual Revenue by Country/Region (2018-2023)
4.3 Americas Inorganic Scnhillators Sales Growth
4.4 APAC Inorganic Scnhillators Sales Growth
4.5 Europe Inorganic Scnhillators Sales Growth
4.6 Middle East & Africa Inorganic Scnhillators Sales Growth
5 Americas
5.1 Americas Inorganic Scnhillators Sales by Country
5.1.1 Americas Inorganic Scnhillators Sales by Country (2018-2023)
5.1.2 Americas Inorganic Scnhillators Revenue by Country (2018-2023)
5.2 Americas Inorganic Scnhillators Sales by Type
5.3 Americas Inorganic Scnhillators Sales by Application
5.4 United States
5.5 Canada
5.6 Mexico
5.7 Brazil
6 APAC
6.1 APAC Inorganic Scnhillators Sales by Region
6.1.1 APAC Inorganic Scnhillators Sales by Region (2018-2023)
6.1.2 APAC Inorganic Scnhillators Revenue by Region (2018-2023)
6.2 APAC Inorganic Scnhillators Sales by Type
6.3 APAC Inorganic Scnhillators Sales by Application
6.4 China
6.5 Japan
6.6 South Korea
6.7 Southeast Asia
6.8 India
6.9 Australia
6.10 China Taiwan
7 Europe
7.1 Europe Inorganic Scnhillators by Country
7.1.1 Europe Inorganic Scnhillators Sales by Country (2018-2023)
7.1.2 Europe Inorganic Scnhillators Revenue by Country (2018-2023)
7.2 Europe Inorganic Scnhillators Sales by Type
7.3 Europe Inorganic Scnhillators Sales by Application
7.4 Germany
7.5 France
7.6 UK
7.7 Italy
7.8 Russia
8 Middle East & Africa
8.1 Middle East & Africa Inorganic Scnhillators by Country
8.1.1 Middle East & Africa Inorganic Scnhillators Sales by Country (2018-2023)
8.1.2 Middle East & Africa Inorganic Scnhillators Revenue by Country (2018-2023)
8.2 Middle East & Africa Inorganic Scnhillators Sales by Type
8.3 Middle East & Africa Inorganic Scnhillators Sales by Application
8.4 Egypt
8.5 South Africa
8.6 Israel
8.7 Turkey
8.8 GCC Countries
9 Market Drivers, Challenges and Trends
9.1 Market Drivers & Growth Opportunities
9.2 Market Challenges & Risks
9.3 Industry Trends
10 Manufacturing Cost Structure Analysis
10.1 Raw Material and Suppliers
10.2 Manufacturing Cost Structure Analysis of Inorganic Scnhillators
10.3 Manufacturing Process Analysis of Inorganic Scnhillators
10.4 Industry Chain Structure of Inorganic Scnhillators
11 Marketing, Distributors and Customer
11.1 Sales Channel
11.1.1 Direct Channels
11.1.2 Indirect Channels
11.2 Inorganic Scnhillators Distributors
11.3 Inorganic Scnhillators Customer
12 World Forecast Review for Inorganic Scnhillators by Geographic Region
12.1 Global Inorganic Scnhillators Market Size Forecast by Region
12.1.1 Global Inorganic Scnhillators Forecast by Region (2024-2029)
12.1.2 Global Inorganic Scnhillators Annual Revenue Forecast by Region (2024-2029)
12.2 Americas Forecast by Country
12.3 APAC Forecast by Region
12.4 Europe Forecast by Country
12.5 Middle East & Africa Forecast by Country
12.6 Global Inorganic Scnhillators Forecast by Type
12.7 Global Inorganic Scnhillators Forecast by Application
13 Key Players Analysis
13.1 Canberra Industries
13.1.1 Canberra Industries Company Information
13.1.2 Canberra Industries Inorganic Scnhillators Product Portfolios and Specifications
13.1.3 Canberra Industries Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.1.4 Canberra Industries Main Business Overview
13.1.5 Canberra Industries Latest Developments
13.2 Philips Healthcare
13.2.1 Philips Healthcare Company Information
13.2.2 Philips Healthcare Inorganic Scnhillators Product Portfolios and Specifications
13.2.3 Philips Healthcare Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.2.4 Philips Healthcare Main Business Overview
13.2.5 Philips Healthcare Latest Developments
13.3 GE Healthcare
13.3.1 GE Healthcare Company Information
13.3.2 GE Healthcare Inorganic Scnhillators Product Portfolios and Specifications
13.3.3 GE Healthcare Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.3.4 GE Healthcare Main Business Overview
13.3.5 GE Healthcare Latest Developments
13.4 Hamamatsu Photonics
13.4.1 Hamamatsu Photonics Company Information
13.4.2 Hamamatsu Photonics Inorganic Scnhillators Product Portfolios and Specifications
13.4.3 Hamamatsu Photonics Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.4.4 Hamamatsu Photonics Main Business Overview
13.4.5 Hamamatsu Photonics Latest Developments
13.5 Hitachi Metals
13.5.1 Hitachi Metals Company Information
13.5.2 Hitachi Metals Inorganic Scnhillators Product Portfolios and Specifications
13.5.3 Hitachi Metals Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.5.4 Hitachi Metals Main Business Overview
13.5.5 Hitachi Metals Latest Developments
13.6 Ludlum Measurements
13.6.1 Ludlum Measurements Company Information
13.6.2 Ludlum Measurements Inorganic Scnhillators Product Portfolios and Specifications
13.6.3 Ludlum Measurements Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.6.4 Ludlum Measurements Main Business Overview
13.6.5 Ludlum Measurements Latest Developments
13.7 Saint Gobain
13.7.1 Saint Gobain Company Information
13.7.2 Saint Gobain Inorganic Scnhillators Product Portfolios and Specifications
13.7.3 Saint Gobain Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.7.4 Saint Gobain Main Business Overview
13.7.5 Saint Gobain Latest Developments
13.8 Toshiba Corporation
13.8.1 Toshiba Corporation Company Information
13.8.2 Toshiba Corporation Inorganic Scnhillators Product Portfolios and Specifications
13.8.3 Toshiba Corporation Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.8.4 Toshiba Corporation Main Business Overview
13.8.5 Toshiba Corporation Latest Developments
13.9 Zecotek Photonics
13.9.1 Zecotek Photonics Company Information
13.9.2 Zecotek Photonics Inorganic Scnhillators Product Portfolios and Specifications
13.9.3 Zecotek Photonics Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.9.4 Zecotek Photonics Main Business Overview
13.9.5 Zecotek Photonics Latest Developments
13.10 Scintacor
13.10.1 Scintacor Company Information
13.10.2 Scintacor Inorganic Scnhillators Product Portfolios and Specifications
13.10.3 Scintacor Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.10.4 Scintacor Main Business Overview
13.10.5 Scintacor Latest Developments
13.11 Scint-X Structured Scintillators
13.11.1 Scint-X Structured Scintillators Company Information
13.11.2 Scint-X Structured Scintillators Inorganic Scnhillators Product Portfolios and Specifications
13.11.3 Scint-X Structured Scintillators Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.11.4 Scint-X Structured Scintillators Main Business Overview
13.11.5 Scint-X Structured Scintillators Latest Developments
13.12 Mirion Technologies
13.12.1 Mirion Technologies Company Information
13.12.2 Mirion Technologies Inorganic Scnhillators Product Portfolios and Specifications
13.12.3 Mirion Technologies Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.12.4 Mirion Technologies Main Business Overview
13.12.5 Mirion Technologies Latest Developments
13.13 Radiation Monitoring Devices
13.13.1 Radiation Monitoring Devices Company Information
13.13.2 Radiation Monitoring Devices Inorganic Scnhillators Product Portfolios and Specifications
13.13.3 Radiation Monitoring Devices Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.13.4 Radiation Monitoring Devices Main Business Overview
13.13.5 Radiation Monitoring Devices Latest Developments
13.14 Rexon Components and TLD Systems
13.14.1 Rexon Components and TLD Systems Company Information
13.14.2 Rexon Components and TLD Systems Inorganic Scnhillators Product Portfolios and Specifications
13.14.3 Rexon Components and TLD Systems Inorganic Scnhillators Sales, Revenue, Price and Gross Margin (2018-2023)
13.14.4 Rexon Components and TLD Systems Main Business Overview
13.14.5 Rexon Components and TLD Systems Latest Developments
14 Research Findings and Conclusion
※参考情報 無機シュニレーター(Inorganic Scintillators)は、放射線や粒子が物質中を通過するときに発する光を利用する材料でっあります。これらの材料は、高エネルギーの放射線を検出するための重要な役割を果たし、放射線測定や医療、物理学的実験、宇宙探索など多くの分野で使用されています。本稿では、無機シュニレーターの定義、特徴、種類、用途、および関連技術について詳述いたします。 無機シュニレーターの定義は、特定の化学組成を持ち、高エネルギーの放射線(例えばγ線やβ線)に照射されると光子を放出する性質を持つ物質を指します。この光子は、しばしば紫外線または可視光の領域にあり、他の検出機器(光電子増倍管やシリコン光センサーなど)を使って検知することができます。 無機シュニレーターの特徴として、以下の点が挙げられます。まず、無機シュニレーターは一般的に高い光出力を持ち、放射線に対する感度が高いという特徴があります。また、熱的安定性や放射線耐性に優れており、長期間にわたって安定した性能を保つことができます。さらに、無機シュニレーターは様々な波長の光を発生させることができるため、複数の検出器と組み合わせて使用することができるという柔軟性も持っています。 無機シュニレーターは、主に以下のような種類に分類されます。一つ目は、ダウンコンバージョン型シュニレーターです。このタイプは、高エネルギーの放射線が物質中の原子やイオンに衝突することで励起され、その後、低エネルギーの光子に変換されるプロセスを特徴としています。例えば、ナトリウム-ヨウ素(NaI)などの結晶がこの例に該当します。二つ目は、ワイドバンドギャップ型シュニレーターで、主に酸化物や炭化物などが含まれます。これらは高いエネルギーの放射線に対する応答性が高く、特に高エネルギー物理学の分野での利用が期待されています。 無機シュニレーターの用途は幅広く、主に放射線検出器、医療用イメージング、放射性物質の測定、環境監視などに使用されます。放射線検出器としては、核医学の分野でSPECT(単光子放射断層撮影)やPET(陽電子放射断層撮影)などの技術があり、これに無機シュニレーターが用いられます。また、放射線治療においても、患者に照射される放射線の分布を可視化するためにシュニレーターが利用されます。 さらに、無機シュニレーターは、宇宙探査の分野でも重要な役割を果たしています。宇宙空間では、宇宙線や放射線が多く存在するため、これらを測定するための装置に無機シュニレーターが組み込まれていることがあります。これにより、宇宙環境における放射線の影響を評価し、宇宙飛行士や装置を守るための重要な情報を提供します。 また、近年では、無機シュニレーターの性能向上を目指し、様々な関連技術が研究開発されています。例えば、ナノテクノロジーを活用した新しい材料の合成や、放射線によって誘発されるトラップ中心の理解を深める研究が進められています。これにより、より高性能なシュニレーターの実現が期待されています。 無機シュニレーターについての研究は、これからも進展していくことが予想されます。新しい材料の発見や、既存の材料の改良、またはそれらを用いた新たな応用開発など、広範な分野での成果が期待されるでしょう。特に、医療分野においては、より迅速かつ正確な診断技術の確立が求められる中で、無機シュニレーターが果たす役割はさらに重要になることでしょう。 このように、無機シュニレーターは放射線検出の重要な要素であり、様々な応用が期待される材料です。将来的には、技術の進歩により、無機シュニレーターの性能が更に向上し、さまざまな分野でますます幅広く応用されていくことが期待されます。 |