1 エグゼクティブサマリー
1.1 市場規模 2024-2025
1.2 市場成長 2025(F)-2034(F)
1.3 主要需要要因
1.4 主要プレイヤーと競争構造
1.5 業界ベストプラクティス
1.6 最近の動向と発展
1.7 業界見通し
2 市場概要とステークホルダーインサイト
2.1 市場動向
2.2 主要垂直市場
2.3 主要地域
2.4 供給者パワー
2.5 購買者パワー
2.6 主要市場機会とリスク
2.7 ステークホルダーによる主要イニシアチブ
3 経済概要
3.1 GDP見通し
3.2 一人当たりGDP成長率
3.3 インフレ動向
3.4 民主主義指数
3.5 公的債務総額比率
3.6 国際収支(BoP)ポジション
3.7 人口見通し
3.8 都市化動向
4 国別リスクプロファイル
4.1 国別リスク
4.2 ビジネス環境
5 グローバル地中探査レーダー市場分析
5.1 主要業界ハイライト
5.2 世界の地中探査レーダー市場の歴史的動向(2018-2024年)
5.3 世界の地中探査レーダー市場予測(2025-2034年)
5.4 提供形態別世界の地中探査レーダー市場
5.4.1 機器
5.4.1.1 歴史的動向(2018-2024年)
5.4.1.2 予測動向(2025-2034)
5.4.2 サービス
5.4.2.1 過去動向(2018-2024)
5.4.2.2 予測動向(2025-2034)
5.5 製品タイプ別グローバル地中探査レーダー市場
5.5.1 ハンドヘルドシステム
5.5.1.1 過去動向(2018-2024年)
5.5.1.2 予測動向(2025-2034年)
5.5.2 カートベースシステム
5.5.2.1 過去動向(2018-2024年)
5.5.2.2 予測動向(2025-2034年)
5.5.3 車載システム
5.5.3.1 過去動向(2018-2024年)
5.5.3.2 予測動向(2025-2034年)
5.6 用途別グローバル地中レーダー市場
5.6.1 ユーティリティ検知
5.6.1.1 過去動向(2018-2024年)
5.6.1.2 予測動向(2025-2034)
5.6.2 コンクリート調査
5.6.2.1 過去動向(2018-2024)
5.6.2.2 予測動向(2025-2034)
5.6.3 法医学・考古学
5.6.3.1 過去動向(2018-2024年)
5.6.3.2 予測動向(2025-2034年)
5.6.4 交通インフラ
5.6.4.1 過去動向(2018-2024年)
5.6.4.2 予測動向(2025-2034年)
5.6.5 地盤工学および環境
5.6.5.1 過去動向(2018-2024)
5.6.5.2 予測動向(2025-2034)
5.6.6 その他
5.7 地域別グローバル地中レーダー市場
5.7.1 北米
5.7.1.1 過去動向(2018-2024年)
5.7.1.2 予測動向(2025-2034年)
5.7.2 欧州
5.7.2.1 過去動向(2018-2024年)
5.7.2.2 予測動向(2025-2034年)
5.7.3 アジア太平洋地域
5.7.3.1 過去動向(2018-2024年)
5.7.3.2 予測動向(2025-2034年)
5.7.4 ラテンアメリカ
5.7.4.1 過去動向(2018-2024年)
5.7.4.2 予測動向(2025-2034)
5.7.5 中東・アフリカ
5.7.5.1 過去動向(2018-2024)
5.7.5.2 予測動向(2025-2034)
6 北米地中探査レーダー市場分析
6.1 アメリカ合衆国
6.1.1 過去動向(2018-2024年)
6.1.2 予測動向(2025-2034年)
6.2 カナダ
6.2.1 過去動向(2018-2024年)
6.2.2 予測動向(2025-2034年)
7 欧州地中探査レーダー市場分析
7.1 イギリス
7.1.1 過去動向(2018-2024年)
7.1.2 予測動向(2025-2034年)
7.2 ドイツ
7.2.1 過去動向(2018-2024年)
7.2.2 予測動向(2025-2034年)
7.3 フランス
7.3.1 過去動向(2018-2024年)
7.3.2 予測動向(2025-2034年)
7.4 イタリア
7.4.1 過去動向(2018-2024年)
7.4.2 予測動向(2025-2034年)
7.5 その他
8 アジア太平洋地域地中探査レーダー市場分析
8.1 中国
8.1.1 過去動向(2018-2024年)
8.1.2 予測動向(2025-2034年)
8.2 日本
8.2.1 過去動向(2018-2024年)
8.2.2 予測動向(2025-2034)
8.3 インド
8.3.1 過去動向(2018-2024)
8.3.2 予測動向(2025-2034)
8.4 ASEAN
8.4.1 過去動向(2018-2024)
8.4.2 予測動向(2025-2034)
8.5 オーストラリア
8.5.1 過去動向(2018-2024)
8.5.2 予測動向(2025-2034)
8.6 その他
9 ラテンアメリカ地中探査レーダー市場分析
9.1 ブラジル
9.1.1 過去動向(2018-2024年)
9.1.2 予測動向(2025-2034年)
9.2 アルゼンチン
9.2.1 過去動向(2018-2024年)
9.2.2 予測動向(2025-2034年)
9.3 メキシコ
9.3.1 過去動向(2018-2024年)
9.3.2 予測動向(2025-2034年)
9.4 その他
10 中東・アフリカ地中探査レーダー市場分析
10.1 サウジアラビア
10.1.1 過去動向(2018-2024年)
10.1.2 予測動向(2025-2034)
10.2 アラブ首長国連邦
10.2.1 過去動向(2018-2024)
10.2.2 予測動向(2025-2034)
10.3 ナイジェリア
10.3.1 過去動向(2018-2024)
10.3.2 予測動向(2025-2034)
10.4 南アフリカ
10.4.1 過去動向(2018-2024)
10.4.2 予測動向(2025-2034)
10.5 その他
11 市場ダイナミクス
11.1 SWOT分析
11.1.1 強み
11.1.2 弱み
11.1.3 機会
11.1.4 脅威
11.2 ポーターの5つの力分析
11.2.1 供給者の交渉力
11.2.2 購買者の交渉力
11.2.3 新規参入の脅威
11.2.4 競争の激しさ
11.2.5 代替品の脅威
11.3 需要の主要指標
11.4 価格の主要指標
12 バリューチェーン分析
13 競争環境
13.1 サプライヤー選定
13.2 主要グローバルプレイヤー
13.3 主要地域プレイヤー
13.4 主要プレイヤーの戦略
13.5 企業プロファイル
13.5.1 IDS GeoRadar s.r.l.
13.5.1.1 会社概要
13.5.1.2 製品ポートフォリオ
13.5.1.3 対象顧客層と実績
13.5.1.4 認証取得状況
13.5.2 Sensors & Software Inc.
13.5.2.1 会社概要
13.5.2.2 製品ポートフォリオ
13.5.2.3 対象地域と実績
13.5.2.4 認証
13.5.3 Guideline Geo
13.5.3.1 会社概要
13.5.3.2 製品ポートフォリオ
13.5.3.3 対象地域と実績
13.5.3.4 認証
13.5.4 ケムリング・グループ PLC
13.5.4.1 会社概要
13.5.4.2 製品ポートフォリオ
13.5.4.3 対象地域と実績
13.5.4.4 認証
13.5.5 GSSI 地球物理調査システムズ社
13.5.5.1 会社概要
13.5.5.2 製品ポートフォリオ
13.5.5.3 対象地域と実績
13.5.5.4 認証
13.5.6 ギオスキャナーズAB
13.5.6.1 会社概要
13.5.6.2 製品ポートフォリオ
13.5.6.3 対象地域と実績
13.5.6.4 認証
13.5.7 ライカ・ジオシステムズAG
13.5.7.1 会社概要
13.5.7.2 製品ポートフォリオ
13.5.7.3 対象地域と実績
13.5.7.4 認証
13.5.8 USレーダー社
13.5.8.1 会社概要
13.5.8.2 製品ポートフォリオ
13.5.8.3 対象地域と実績
13.5.8.4 認証
13.5.9 Radiodetection Ltd.
13.5.9.1 会社概要
13.5.9.2 製品ポートフォリオ
13.5.9.3 対象地域と実績
13.5.9.4 認証
13.5.10 その他
1.1 Market Size 2024-2025
1.2 Market Growth 2025(F)-2034(F)
1.3 Key Demand Drivers
1.4 Key Players and Competitive Structure
1.5 Industry Best Practices
1.6 Recent Trends and Developments
1.7 Industry Outlook
2 Market Overview and Stakeholder Insights
2.1 Market Trends
2.2 Key Verticals
2.3 Key Regions
2.4 Supplier Power
2.5 Buyer Power
2.6 Key Market Opportunities and Risks
2.7 Key Initiatives by Stakeholders
3 Economic Summary
3.1 GDP Outlook
3.2 GDP Per Capita Growth
3.3 Inflation Trends
3.4 Democracy Index
3.5 Gross Public Debt Ratios
3.6 Balance of Payment (BoP) Position
3.7 Population Outlook
3.8 Urbanisation Trends
4 Country Risk Profiles
4.1 Country Risk
4.2 Business Climate
5 Global Ground Penetrating Radar Market Analysis
5.1 Key Industry Highlights
5.2 Global Ground Penetrating Radar Historical Market (2018-2024)
5.3 Global Ground Penetrating Radar Market Forecast (2025-2034)
5.4 Global Ground Penetrating Radar Market by Offering
5.4.1 Equipment
5.4.1.1 Historical Trend (2018-2024)
5.4.1.2 Forecast Trend (2025-2034)
5.4.2 Services
5.4.2.1 Historical Trend (2018-2024)
5.4.2.2 Forecast Trend (2025-2034)
5.5 Global Ground Penetrating Radar Market by Product Type
5.5.1 Handheld Systems
5.5.1.1 Historical Trend (2018-2024)
5.5.1.2 Forecast Trend (2025-2034)
5.5.2 Cart-Based Systems
5.5.2.1 Historical Trend (2018-2024)
5.5.2.2 Forecast Trend (2025-2034)
5.5.3 Vehicle-Mounted Systems
5.5.3.1 Historical Trend (2018-2024)
5.5.3.2 Forecast Trend (2025-2034)
5.6 Global Ground Penetrating Radar Market by Application
5.6.1 Utility Detection
5.6.1.1 Historical Trend (2018-2024)
5.6.1.2 Forecast Trend (2025-2034)
5.6.2 Concrete Investigation
5.6.2.1 Historical Trend (2018-2024)
5.6.2.2 Forecast Trend (2025-2034)
5.6.3 Forensics and Archaeology
5.6.3.1 Historical Trend (2018-2024)
5.6.3.2 Forecast Trend (2025-2034)
5.6.4 Transportation Infrastructure
5.6.4.1 Historical Trend (2018-2024)
5.6.4.2 Forecast Trend (2025-2034)
5.6.5 Geotechnical and Environment
5.6.5.1 Historical Trend (2018-2024)
5.6.5.2 Forecast Trend (2025-2034)
5.6.6 Others
5.7 Global Ground Penetrating Radar Market by Region
5.7.1 North America
5.7.1.1 Historical Trend (2018-2024)
5.7.1.2 Forecast Trend (2025-2034)
5.7.2 Europe
5.7.2.1 Historical Trend (2018-2024)
5.7.2.2 Forecast Trend (2025-2034)
5.7.3 Asia Pacific
5.7.3.1 Historical Trend (2018-2024)
5.7.3.2 Forecast Trend (2025-2034)
5.7.4 Latin America
5.7.4.1 Historical Trend (2018-2024)
5.7.4.2 Forecast Trend (2025-2034)
5.7.5 Middle East and Africa
5.7.5.1 Historical Trend (2018-2024)
5.7.5.2 Forecast Trend (2025-2034)
6 North America Ground Penetrating Radar Market Analysis
6.1 United States of America
6.1.1 Historical Trend (2018-2024)
6.1.2 Forecast Trend (2025-2034)
6.2 Canada
6.2.1 Historical Trend (2018-2024)
6.2.2 Forecast Trend (2025-2034)
7 Europe Ground Penetrating Radar Market Analysis
7.1 United Kingdom
7.1.1 Historical Trend (2018-2024)
7.1.2 Forecast Trend (2025-2034)
7.2 Germany
7.2.1 Historical Trend (2018-2024)
7.2.2 Forecast Trend (2025-2034)
7.3 France
7.3.1 Historical Trend (2018-2024)
7.3.2 Forecast Trend (2025-2034)
7.4 Italy
7.4.1 Historical Trend (2018-2024)
7.4.2 Forecast Trend (2025-2034)
7.5 Others
8 Asia Pacific Ground Penetrating Radar Market Analysis
8.1 China
8.1.1 Historical Trend (2018-2024)
8.1.2 Forecast Trend (2025-2034)
8.2 Japan
8.2.1 Historical Trend (2018-2024)
8.2.2 Forecast Trend (2025-2034)
8.3 India
8.3.1 Historical Trend (2018-2024)
8.3.2 Forecast Trend (2025-2034)
8.4 ASEAN
8.4.1 Historical Trend (2018-2024)
8.4.2 Forecast Trend (2025-2034)
8.5 Australia
8.5.1 Historical Trend (2018-2024)
8.5.2 Forecast Trend (2025-2034)
8.6 Others
9 Latin America Ground Penetrating Radar Market Analysis
9.1 Brazil
9.1.1 Historical Trend (2018-2024)
9.1.2 Forecast Trend (2025-2034)
9.2 Argentina
9.2.1 Historical Trend (2018-2024)
9.2.2 Forecast Trend (2025-2034)
9.3 Mexico
9.3.1 Historical Trend (2018-2024)
9.3.2 Forecast Trend (2025-2034)
9.4 Others
10 Middle East and Africa Ground Penetrating Radar Market Analysis
10.1 Saudi Arabia
10.1.1 Historical Trend (2018-2024)
10.1.2 Forecast Trend (2025-2034)
10.2 United Arab Emirates
10.2.1 Historical Trend (2018-2024)
10.2.2 Forecast Trend (2025-2034)
10.3 Nigeria
10.3.1 Historical Trend (2018-2024)
10.3.2 Forecast Trend (2025-2034)
10.4 South Africa
10.4.1 Historical Trend (2018-2024)
10.4.2 Forecast Trend (2025-2034)
10.5 Others
11 Market Dynamics
11.1 SWOT Analysis
11.1.1 Strengths
11.1.2 Weaknesses
11.1.3 Opportunities
11.1.4 Threats
11.2 Porter’s Five Forces Analysis
11.2.1 Supplier’s Power
11.2.2 Buyer’s Power
11.2.3 Threat of New Entrants
11.2.4 Degree of Rivalry
11.2.5 Threat of Substitutes
11.3 Key Indicators for Demand
11.4 Key Indicators for Price
12 Value Chain Analysis
13 Competitive Landscape
13.1 Supplier Selection
13.2 Key Global Players
13.3 Key Regional Players
13.4 Key Player Strategies
13.5 Company Profiles
13.5.1 IDS GeoRadar s.r.l.
13.5.1.1 Company Overview
13.5.1.2 Product Portfolio
13.5.1.3 Demographic Reach and Achievements
13.5.1.4 Certifications
13.5.2 Sensors & Software Inc.
13.5.2.1 Company Overview
13.5.2.2 Product Portfolio
13.5.2.3 Demographic Reach and Achievements
13.5.2.4 Certifications
13.5.3 Guideline Geo
13.5.3.1 Company Overview
13.5.3.2 Product Portfolio
13.5.3.3 Demographic Reach and Achievements
13.5.3.4 Certifications
13.5.4 Chemring Group PLC
13.5.4.1 Company Overview
13.5.4.2 Product Portfolio
13.5.4.3 Demographic Reach and Achievements
13.5.4.4 Certifications
13.5.5 GSSI Geophysical Survey Systems, Inc.
13.5.5.1 Company Overview
13.5.5.2 Product Portfolio
13.5.5.3 Demographic Reach and Achievements
13.5.5.4 Certifications
13.5.6 Geoscanners AB
13.5.6.1 Company Overview
13.5.6.2 Product Portfolio
13.5.6.3 Demographic Reach and Achievements
13.5.6.4 Certifications
13.5.7 Leica Geosystems AG
13.5.7.1 Company Overview
13.5.7.2 Product Portfolio
13.5.7.3 Demographic Reach and Achievements
13.5.7.4 Certifications
13.5.8 US Radar Inc.
13.5.8.1 Company Overview
13.5.8.2 Product Portfolio
13.5.8.3 Demographic Reach and Achievements
13.5.8.4 Certifications
13.5.9 Radiodetection Ltd.
13.5.9.1 Company Overview
13.5.9.2 Product Portfolio
13.5.9.3 Demographic Reach and Achievements
13.5.9.4 Certifications
13.5.10 Others
| ※参考情報 地中探査レーダー(GPR)は、地下の構造物や物質を非破壊的に調査するための技術です。この技術は、無線周波数の電磁波を用いて地下の情報を取得し、地形や物質の違いを視覚化することが可能です。地中探査レーダーは、一般的に、氷、土壌、岩石、コンクリート、埋設物などの調査に使用されます。 GPRの基本的な原理は、電磁波を地中に向けて送信し、地中の異物や層によって反射された波を受信することです。電磁波は異なる材料を通過する際に速度が変わり、また、材料の境界で反射が生じます。この反射波を分析することで、地下の構造や物質の分布を把握することができます。通常、使用される周波数帯域は数百メガヘルツから数ギガヘルツであり、高周波の場合は解像度が高く、低周波の場合は深部まで探査することが可能です。 地中探査レーダーには、さまざまな種類があります。その中には、携帯型の装置、車両搭載型の装置、トレーラー型の装置などが含まれます。携帯型のGPRは、狭小な場所やアクセスが難しい領域での調査に適しています。一方で、車両搭載型やトレーラー型は、大規模な調査や長距離の走行が可能です。また、近年では、より高精度な測定が可能となるように、新しい技術やセンサーの開発が行われています。 地中探査レーダーの用途は多岐にわたります。例えば、考古学においては、埋蔵文化財の発掘前調査に利用され、地下の遺構や墓地の位置を把握するのに役立っています。土木工事では、地下の埋設物や空洞を確認するために使用され、事故やトラブルを未然に防ぐための重要な手段となっています。また、環境調査では、地下水位の測定や汚染物質の拡散状況の把握に寄与しています。さらに、農業分野においても、土壌の構造や湿度の状態を評価するために用いられることがあります。 関連技術としては、レーザー測量や地震波探査、磁気探査などがあります。レーザー測量は表面の高精度な三次元地形データを取得するための技術で、地中探査レーダーと組み合わせることで、より詳細な情報を得ることができます。地震波探査は地下の層構造を調べるための手法で、大深度の調査に向いています。磁気探査は、地下に埋設された金属物体や鉱床の位置を特定するのに有効です。これらの技術は、GPRと組み合わせることで、より包括的な地下調査が可能となります。 ただし、地中探査レーダーにはいくつかの限界も存在します。例えば、地下の材料が非常に湿った状態である場合や、地質が複雑で反射が多様な場合、正確なデータが得られにくくなります。また、非常に高い周波数を使用する場合、探査可能な深度が限られるため、調査対象に応じた周波数の選択が重要です。さらに、GPRのデータ解析には専門的な知識や技術が必要であるため、使用にはトレーニングが求められます。 近年、地中探査レーダーの技術は進化を続けており、デジタル信号処理やAI(人工知能)技術の導入により、データ解析の精度や効率が向上しています。これにより、さまざまな分野での応用が拡大し、より多くの情報を迅速に取得できるようになっています。地中探査レーダーは今後も、建設業や環境調査、考古学など多様な領域での重要なツールであり続けることでしょう。 |

