第1章:はじめに
1.1. レポート概要
1.2. 主要市場セグメント
1.3. ステークホルダーへの主な利点
1.4. 調査方法論
1.4.1. 一次調査
1.4.2. 二次調査
1.4.3. アナリストツールとモデル
第2章:エグゼクティブサマリー
2.1. CXOの視点
第3章:市場概要
3.1. 市場定義と範囲
3.2. 主要な調査結果
3.2.1. 主要な影響要因
3.2.2. 主要な投資分野
3.3. ポーターの5つの力分析
3.3.1. 供給者の交渉力が高い
3.3.2. 新規参入の脅威が高い
3.3.3. 代替品の脅威が高い
3.3.4. 競争の激化
3.3.5. 買い手の交渉力の高さ
3.4. 市場ダイナミクス
3.4.1. 推進要因
3.4.1.1. エネルギー需要の増加
3.4.1.2. 再生可能エネルギー政策
3.4.1.3. TPV技術の進歩
3.4.2. 抑制要因
3.4.2.1. 市場認知度の低さ
3.4.2.2. 技術的複雑性
3.4.3. 機会
3.4.3.1. 既存技術との統合
3.4.3.2. 新興産業用途
3.5. 市場へのCOVID-19影響分析
3.6. バリューチェーン分析
3.7. 主要規制分析
第4章:サーモフォトボルタイクス市場(タイプ別)
4.1. 概要
4.1.1. 市場規模と予測
4.2. シリコン太陽電池
4.2.1. 主要市場動向、成長要因および機会
4.2.2. 地域別市場規模と予測
4.2.3. 国別市場シェア分析
4.3. 結晶系太陽光発電セル
4.3.1. 主要市場動向、成長要因および機会
4.3.2. 地域別市場規模と予測
4.3.3. 国別市場シェア分析
4.4. 薄膜太陽光発電セル
4.4.1. 主要市場動向、成長要因および機会
4.4.2. 地域別市場規模と予測
4.4.3. 国別市場シェア分析
4.5. その他
4.5.1. 主要市場動向、成長要因および機会
4.5.2. 地域別市場規模と予測
4.5.3. 国別市場シェア分析
第5章:用途別サーモフォトボルタイクス市場
5.1. 概要
5.1.1. 市場規模と予測
5.2. 太陽光発電
5.2.1. 主要市場動向、成長要因および機会
5.2.2. 地域別市場規模と予測
5.2.3. 国別市場シェア分析
5.3. 原子力発電
5.3.1. 主要市場動向、成長要因および機会
5.3.2. 地域別市場規模と予測
5.3.3. 国別市場シェア分析
5.4. 火力発電所
5.4.1. 主要市場動向、成長要因および機会
5.4.2. 地域別市場規模と予測
5.4.3. 国別市場シェア分析
5.5. 軍事
5.5.1. 主要市場動向、成長要因および機会
5.5.2. 地域別市場規模と予測
5.5.3. 国別市場シェア分析
5.6. オフグリッド発電機
5.6.1. 主要市場動向、成長要因および機会
5.6.2. 地域別市場規模と予測
5.6.3. 国別市場シェア分析
5.7. ポータブル電子機器
5.7.1. 主要市場動向、成長要因および機会
5.7.2. 地域別市場規模と予測
5.7.3. 国別市場シェア分析
5.8. その他
5.8.1. 主要市場動向、成長要因および機会
5.8.2. 地域別市場規模と予測
5.8.3. 国別市場シェア分析
第6章:サーモフォトボルタイクス市場(地域別)
6.1. 概要
6.1.1. 地域別市場規模と予測
6.2. 北米
6.2.1. 主要トレンドと機会
6.2.2. タイプ別市場規模と予測
6.2.3. 用途別市場規模と予測
6.2.4. 国別市場規模と予測
6.2.4.1. 米国
6.2.4.1.1. 主要市場動向、成長要因および機会
6.2.4.1.2. タイプ別市場規模と予測
6.2.4.1.3. 用途別市場規模と予測
6.2.4.2. カナダ
6.2.4.2.1. 主要市場動向、成長要因および機会
6.2.4.2.2. 市場規模と予測(タイプ別)
6.2.4.2.3. 市場規模と予測(用途別)
6.2.4.3. メキシコ
6.2.4.3.1. 主要な市場動向、成長要因および機会
6.2.4.3.2. 市場規模と予測(タイプ別)
6.2.4.3.3. 市場規模と予測(用途別)
6.3. ヨーロッパ
6.3.1. 主要トレンドと機会
6.3.2. タイプ別市場規模と予測
6.3.3. 用途別市場規模と予測
6.3.4. 国別市場規模と予測
6.3.4.1. ドイツ
6.3.4.1.1. 主要市場動向、成長要因、機会
6.3.4.1.2. タイプ別市場規模と予測
6.3.4.1.3. 用途別市場規模と予測
6.3.4.2. イタリア
6.3.4.2.1. 主要市場動向、成長要因および機会
6.3.4.2.2. タイプ別市場規模と予測
6.3.4.2.3. 用途別市場規模と予測
6.3.4.3. スペイン
6.3.4.3.1. 主要市場動向、成長要因および機会
6.3.4.3.2. タイプ別市場規模と予測
6.3.4.3.3. 用途別市場規模と予測
6.3.4.4. イギリス
6.3.4.4.1. 主要市場動向、成長要因および機会
6.3.4.4.2. 市場規模と予測(タイプ別)
6.3.4.4.3. 市場規模と予測(用途別)
6.3.4.5. フランス
6.3.4.5.1. 主要市場動向、成長要因および機会
6.3.4.5.2. 市場規模と予測(タイプ別)
6.3.4.5.3. 市場規模と予測(用途別)
6.3.4.6. その他の欧州
6.3.4.6.1. 主要市場動向、成長要因および機会
6.3.4.6.2. タイプ別市場規模と予測
6.3.4.6.3. 用途別市場規模と予測
6.4. アジア太平洋地域
6.4.1. 主要動向と機会
6.4.2. タイプ別市場規模と予測
6.4.3. 用途別市場規模と予測
6.4.4. 国別市場規模と予測
6.4.4.1. 中国
6.4.4.1.1. 主要市場動向、成長要因および機会
6.4.4.1.2. タイプ別市場規模と予測
6.4.4.1.3. 用途別市場規模と予測
6.4.4.2. 日本
6.4.4.2.1. 主要市場動向、成長要因および機会
6.4.4.2.2. タイプ別市場規模と予測
6.4.4.2.3. 用途別市場規模と予測
6.4.4.3. インド
6.4.4.3.1. 主要市場動向、成長要因および機会
6.4.4.3.2. 市場規模と予測(タイプ別)
6.4.4.3.3. 市場規模と予測(用途別)
6.4.4.4. 韓国
6.4.4.4.1. 主要市場動向、成長要因および機会
6.4.4.4.2. 市場規模と予測(タイプ別)
6.4.4.4.3. 市場規模と予測(用途別)
6.4.4.5. その他のアジア太平洋地域
6.4.4.5.1. 主要な市場動向、成長要因および機会
6.4.4.5.2. タイプ別市場規模と予測
6.4.4.5.3. 用途別市場規模と予測
6.5. LAMEA地域
6.5.1. 主要な動向と機会
6.5.2. タイプ別市場規模と予測
6.5.3. 用途別市場規模と予測
6.5.4. 国別市場規模と予測
6.5.4.1. ブラジル
6.5.4.1.1. 主要市場動向、成長要因および機会
6.5.4.1.2. タイプ別市場規模と予測
6.5.4.1.3. 用途別市場規模と予測
6.5.4.2. チリ
6.5.4.2.1. 主要市場動向、成長要因および機会
6.5.4.2.2. タイプ別市場規模と予測
6.5.4.2.3. 用途別市場規模と予測
6.5.4.3. 南アフリカ
6.5.4.3.1. 主要市場動向、成長要因および機会
6.5.4.3.2. タイプ別市場規模と予測
6.5.4.3.3. 用途別市場規模と予測
6.5.4.4. LAMEAその他の地域
6.5.4.4.1. 主要市場動向、成長要因および機会
6.5.4.4.2. タイプ別市場規模と予測
6.5.4.4.3. 用途別市場規模と予測
第7章:競争環境
7.1. はじめに
7.2. 主要な成功戦略
7.3. トップ10企業の製品マッピング
7.4. 競争ダッシュボード
7.5. 競争ヒートマップ
7.6. 2022年における主要企業のポジショニング
第8章:企業プロファイル
8.1. MicroLink Devices
8.1.1. 会社概要
8.1.2. 主要幹部
8.1.3. 会社概要
8.1.4. 事業セグメント
8.1.5. 製品ポートフォリオ
8.2. Azur Space Solar Power
8.2.1. 会社概要
8.2.2. 主要幹部
8.2.3. 会社概要
8.2.4. 事業セグメント
8.2.5. 製品ポートフォリオ
8.3. スペクトロラボ
8.3.1. 会社概要
8.3.2. 主要幹部
8.3.3. 会社概要
8.3.4. 事業セグメント
8.3.5. 製品ポートフォリオ
8.3.6. 主要な戦略的動向と展開
8.4. ショットAG
8.4.1. 会社概要
8.4.2. 主要幹部
8.4.3. 会社概要
8.4.4. 事業セグメント
8.4.5. 製品ポートフォリオ
8.5. アルタ・デバイス社
8.5.1. 会社概要
8.5.2. 主要幹部
8.5.3. 会社概要
8.5.4. 事業セグメント
8.5.5. 製品ポートフォリオ
8.6. テスラ株式会社
8.6.1. 会社概要
8.6.2. 主要幹部
8.6.3. 会社概要
8.6.4. 事業セグメント
8.6.5. 製品ポートフォリオ
8.6.6. 業績
8.7. アシオナSA
8.7.1. 会社概要
8.7.2. 主要幹部
8.7.3. 会社概要
8.7.4. 事業セグメント
8.7.5. 製品ポートフォリオ
8.7.6. 業績
8.8. アベンゴア・ソーラー社
8.8.1. 会社概要
8.8.2. 主要幹部
8.8.3. 会社概要
8.8.4. 事業セグメント
8.8.5. 製品ポートフォリオ
8.8.6. 業績
8.9. ブライトソース
8.9.1. 会社概要
8.9.2. 主要幹部
8.9.3. 会社概要
8.9.4. 事業セグメント
8.9.5. 製品ポートフォリオ
8.10. ACWAパワー・インターナショナルS.A.O.C.
8.10.1. 会社概要
8.10.2. 主要幹部
8.10.3. 会社概要
8.10.4. 事業セグメント
8.10.5. 製品ポートフォリオ
8.10.6. 業績
8.10.7. 主要な戦略的動向と進展
| ※参考情報 熱光起電力(TPV)は、熱エネルギーを直接的に電気エネルギーに変換する技術です。この技術は、主に高温の物体から放出される赤外線光を利用しており、特に高温のものが光を emitted することによって発生します。TPVは、熱エネルギーを有効活用できるため、主に発電や冷却、そしてマイクロエネルギー生成といった分野での応用が期待されています。 TPVの基本原理は、黒体放射に基づいています。熱源が高温になると、その物体からさまざまな波長の光が放出され、その中には赤外線も含まれています。この赤外線をTPVセルが吸収し、セル内部の半導体材料において電子が励起されることで電流が生成されます。このプロセスは、光が電子にエネルギーを供給することによって電気エネルギーが生成されるため、非常に効率的です。 TPVにはいくつかの種類があります。まず、材料のタイプによって分類できます。一つは、III-V族半導体と呼ばれる材料を使用したTPVセルです。この材料は優れた効率を持ち、高温環境でも動作します。もう一つは、II-VI族半導体を利用したTPVです。こちらは、コスト面での優位性がありますが、効率はIII-V族に比べて劣ることが一般的です。これらに加えて、有機半導体を使用するTPVシステムも研究されており、柔軟性が求められる応用でも期待されています。 TPVの用途は多岐にわたります。一つは、宇宙産業における発電システムです。特に、宇宙機の電力供給においては、太陽光が限られる状況下でも高温物体から利用可能な熱エネルギーを電気に変換することが求められます。また、地球上では、火力発電所や産業用の廃熱回収システムにおいてもTPVが利用され始めています。これにより、エネルギー効率を高め、環境負荷を軽減することが目指されています。 TPVに関連する技術には、熱源の設計やマテリアル工学、光学設計が含まれます。例えば、熱源とTPVセルの間のエネルギー転送を最適化するために、特化した光学材料やコーティングが必要です。これにより、必要な波長の光を効率的にTPVセルに導くことができます。また、熱源の温度管理も重要であり、温度を一定に保つことでTPVの効率を維持することが可能です。 さらに、TPV技術は、再生可能エネルギーとの統合が期待されています。例えば、ソーラーハーベスティングとの併用によって、昼夜を問わず安定した電力供給が可能になる可能性があります。また、熱エネルギーのアップサイクルとして、工場やプラントからの廃熱を利用する方法も研究されています。 今後のTPV技術の革新は、効率の向上やコスト削減に依存しています。新素材の開発や、ナノテクノロジーを活用した両面からのアプローチが進められており、より高性能なTPVデバイスが期待されています。将来的には、家庭用のエネルギー供給システムとして実用化される日も遠くないと考えられています。TPV技術は、持続可能なエネルギー供給の一助となることが期待されており、その進展を見守る価値があります。以上のように、熱光起電力は、発電だけではなく、広範な技術の融合を通じて、様々な分野での応用が期待される先端技術です。 |

