1 Scope of the Report
1.1 Market Introduction
1.2 Years Considered
1.3 Research Objectives
1.4 Market Research Methodology
1.5 Research Process and Data Source
1.6 Economic Indicators
1.7 Currency Considered
1.8 Market Estimation Caveats
2 Executive Summary
2.1 World Market Overview
2.1.1 Global Low-Voltage Differential Signaling (LVDS) Chip Annual Sales 2018-2029
2.1.2 World Current & Future Analysis for Low-Voltage Differential Signaling (LVDS) Chip by Geographic Region, 2018, 2022 & 2029
2.1.3 World Current & Future Analysis for Low-Voltage Differential Signaling (LVDS) Chip by Country/Region, 2018, 2022 & 2029
2.2 Low-Voltage Differential Signaling (LVDS) Chip Segment by Type
2.2.1 Four Channels
2.2.2 Five Channels
2.2.3 Ten Channels
2.3 Low-Voltage Differential Signaling (LVDS) Chip Sales by Type
2.3.1 Global Low-Voltage Differential Signaling (LVDS) Chip Sales Market Share by Type (2018-2023)
2.3.2 Global Low-Voltage Differential Signaling (LVDS) Chip Revenue and Market Share by Type (2018-2023)
2.3.3 Global Low-Voltage Differential Signaling (LVDS) Chip Sale Price by Type (2018-2023)
2.4 Low-Voltage Differential Signaling (LVDS) Chip Segment by Application
2.4.1 Computer Monitor
2.4.2 TV
2.4.3 Camera
2.4.4 Other
2.5 Low-Voltage Differential Signaling (LVDS) Chip Sales by Application
2.5.1 Global Low-Voltage Differential Signaling (LVDS) Chip Sale Market Share by Application (2018-2023)
2.5.2 Global Low-Voltage Differential Signaling (LVDS) Chip Revenue and Market Share by Application (2018-2023)
2.5.3 Global Low-Voltage Differential Signaling (LVDS) Chip Sale Price by Application (2018-2023)
3 Global Low-Voltage Differential Signaling (LVDS) Chip by Company
3.1 Global Low-Voltage Differential Signaling (LVDS) Chip Breakdown Data by Company
3.1.1 Global Low-Voltage Differential Signaling (LVDS) Chip Annual Sales by Company (2018-2023)
3.1.2 Global Low-Voltage Differential Signaling (LVDS) Chip Sales Market Share by Company (2018-2023)
3.2 Global Low-Voltage Differential Signaling (LVDS) Chip Annual Revenue by Company (2018-2023)
3.2.1 Global Low-Voltage Differential Signaling (LVDS) Chip Revenue by Company (2018-2023)
3.2.2 Global Low-Voltage Differential Signaling (LVDS) Chip Revenue Market Share by Company (2018-2023)
3.3 Global Low-Voltage Differential Signaling (LVDS) Chip Sale Price by Company
3.4 Key Manufacturers Low-Voltage Differential Signaling (LVDS) Chip Producing Area Distribution, Sales Area, Product Type
3.4.1 Key Manufacturers Low-Voltage Differential Signaling (LVDS) Chip Product Location Distribution
3.4.2 Players Low-Voltage Differential Signaling (LVDS) Chip Products Offered
3.5 Market Concentration Rate Analysis
3.5.1 Competition Landscape Analysis
3.5.2 Concentration Ratio (CR3, CR5 and CR10) & (2018-2023)
3.6 New Products and Potential Entrants
3.7 Mergers & Acquisitions, Expansion
4 World Historic Review for Low-Voltage Differential Signaling (LVDS) Chip by Geographic Region
4.1 World Historic Low-Voltage Differential Signaling (LVDS) Chip Market Size by Geographic Region (2018-2023)
4.1.1 Global Low-Voltage Differential Signaling (LVDS) Chip Annual Sales by Geographic Region (2018-2023)
4.1.2 Global Low-Voltage Differential Signaling (LVDS) Chip Annual Revenue by Geographic Region (2018-2023)
4.2 World Historic Low-Voltage Differential Signaling (LVDS) Chip Market Size by Country/Region (2018-2023)
4.2.1 Global Low-Voltage Differential Signaling (LVDS) Chip Annual Sales by Country/Region (2018-2023)
4.2.2 Global Low-Voltage Differential Signaling (LVDS) Chip Annual Revenue by Country/Region (2018-2023)
4.3 Americas Low-Voltage Differential Signaling (LVDS) Chip Sales Growth
4.4 APAC Low-Voltage Differential Signaling (LVDS) Chip Sales Growth
4.5 Europe Low-Voltage Differential Signaling (LVDS) Chip Sales Growth
4.6 Middle East & Africa Low-Voltage Differential Signaling (LVDS) Chip Sales Growth
5 Americas
5.1 Americas Low-Voltage Differential Signaling (LVDS) Chip Sales by Country
5.1.1 Americas Low-Voltage Differential Signaling (LVDS) Chip Sales by Country (2018-2023)
5.1.2 Americas Low-Voltage Differential Signaling (LVDS) Chip Revenue by Country (2018-2023)
5.2 Americas Low-Voltage Differential Signaling (LVDS) Chip Sales by Type
5.3 Americas Low-Voltage Differential Signaling (LVDS) Chip Sales by Application
5.4 United States
5.5 Canada
5.6 Mexico
5.7 Brazil
6 APAC
6.1 APAC Low-Voltage Differential Signaling (LVDS) Chip Sales by Region
6.1.1 APAC Low-Voltage Differential Signaling (LVDS) Chip Sales by Region (2018-2023)
6.1.2 APAC Low-Voltage Differential Signaling (LVDS) Chip Revenue by Region (2018-2023)
6.2 APAC Low-Voltage Differential Signaling (LVDS) Chip Sales by Type
6.3 APAC Low-Voltage Differential Signaling (LVDS) Chip Sales by Application
6.4 China
6.5 Japan
6.6 South Korea
6.7 Southeast Asia
6.8 India
6.9 Australia
6.10 China Taiwan
7 Europe
7.1 Europe Low-Voltage Differential Signaling (LVDS) Chip by Country
7.1.1 Europe Low-Voltage Differential Signaling (LVDS) Chip Sales by Country (2018-2023)
7.1.2 Europe Low-Voltage Differential Signaling (LVDS) Chip Revenue by Country (2018-2023)
7.2 Europe Low-Voltage Differential Signaling (LVDS) Chip Sales by Type
7.3 Europe Low-Voltage Differential Signaling (LVDS) Chip Sales by Application
7.4 Germany
7.5 France
7.6 UK
7.7 Italy
7.8 Russia
8 Middle East & Africa
8.1 Middle East & Africa Low-Voltage Differential Signaling (LVDS) Chip by Country
8.1.1 Middle East & Africa Low-Voltage Differential Signaling (LVDS) Chip Sales by Country (2018-2023)
8.1.2 Middle East & Africa Low-Voltage Differential Signaling (LVDS) Chip Revenue by Country (2018-2023)
8.2 Middle East & Africa Low-Voltage Differential Signaling (LVDS) Chip Sales by Type
8.3 Middle East & Africa Low-Voltage Differential Signaling (LVDS) Chip Sales by Application
8.4 Egypt
8.5 South Africa
8.6 Israel
8.7 Turkey
8.8 GCC Countries
9 Market Drivers, Challenges and Trends
9.1 Market Drivers & Growth Opportunities
9.2 Market Challenges & Risks
9.3 Industry Trends
10 Manufacturing Cost Structure Analysis
10.1 Raw Material and Suppliers
10.2 Manufacturing Cost Structure Analysis of Low-Voltage Differential Signaling (LVDS) Chip
10.3 Manufacturing Process Analysis of Low-Voltage Differential Signaling (LVDS) Chip
10.4 Industry Chain Structure of Low-Voltage Differential Signaling (LVDS) Chip
11 Marketing, Distributors and Customer
11.1 Sales Channel
11.1.1 Direct Channels
11.1.2 Indirect Channels
11.2 Low-Voltage Differential Signaling (LVDS) Chip Distributors
11.3 Low-Voltage Differential Signaling (LVDS) Chip Customer
12 World Forecast Review for Low-Voltage Differential Signaling (LVDS) Chip by Geographic Region
12.1 Global Low-Voltage Differential Signaling (LVDS) Chip Market Size Forecast by Region
12.1.1 Global Low-Voltage Differential Signaling (LVDS) Chip Forecast by Region (2024-2029)
12.1.2 Global Low-Voltage Differential Signaling (LVDS) Chip Annual Revenue Forecast by Region (2024-2029)
12.2 Americas Forecast by Country
12.3 APAC Forecast by Region
12.4 Europe Forecast by Country
12.5 Middle East & Africa Forecast by Country
12.6 Global Low-Voltage Differential Signaling (LVDS) Chip Forecast by Type
12.7 Global Low-Voltage Differential Signaling (LVDS) Chip Forecast by Application
13 Key Players Analysis
13.1 Texas Instruments
13.1.1 Texas Instruments Company Information
13.1.2 Texas Instruments Low-Voltage Differential Signaling (LVDS) Chip Product Portfolios and Specifications
13.1.3 Texas Instruments Low-Voltage Differential Signaling (LVDS) Chip Sales, Revenue, Price and Gross Margin (2018-2023)
13.1.4 Texas Instruments Main Business Overview
13.1.5 Texas Instruments Latest Developments
13.2 MAXIM
13.2.1 MAXIM Company Information
13.2.2 MAXIM Low-Voltage Differential Signaling (LVDS) Chip Product Portfolios and Specifications
13.2.3 MAXIM Low-Voltage Differential Signaling (LVDS) Chip Sales, Revenue, Price and Gross Margin (2018-2023)
13.2.4 MAXIM Main Business Overview
13.2.5 MAXIM Latest Developments
13.3 Analog Devices
13.3.1 Analog Devices Company Information
13.3.2 Analog Devices Low-Voltage Differential Signaling (LVDS) Chip Product Portfolios and Specifications
13.3.3 Analog Devices Low-Voltage Differential Signaling (LVDS) Chip Sales, Revenue, Price and Gross Margin (2018-2023)
13.3.4 Analog Devices Main Business Overview
13.3.5 Analog Devices Latest Developments
13.4 ON Semiconductor
13.4.1 ON Semiconductor Company Information
13.4.2 ON Semiconductor Low-Voltage Differential Signaling (LVDS) Chip Product Portfolios and Specifications
13.4.3 ON Semiconductor Low-Voltage Differential Signaling (LVDS) Chip Sales, Revenue, Price and Gross Margin (2018-2023)
13.4.4 ON Semiconductor Main Business Overview
13.4.5 ON Semiconductor Latest Developments
13.5 NXP Semiconductors
13.5.1 NXP Semiconductors Company Information
13.5.2 NXP Semiconductors Low-Voltage Differential Signaling (LVDS) Chip Product Portfolios and Specifications
13.5.3 NXP Semiconductors Low-Voltage Differential Signaling (LVDS) Chip Sales, Revenue, Price and Gross Margin (2018-2023)
13.5.4 NXP Semiconductors Main Business Overview
13.5.5 NXP Semiconductors Latest Developments
13.6 NEC
13.6.1 NEC Company Information
13.6.2 NEC Low-Voltage Differential Signaling (LVDS) Chip Product Portfolios and Specifications
13.6.3 NEC Low-Voltage Differential Signaling (LVDS) Chip Sales, Revenue, Price and Gross Margin (2018-2023)
13.6.4 NEC Main Business Overview
13.6.5 NEC Latest Developments
13.7 Microchip Technology Inc.
13.7.1 Microchip Technology Inc. Company Information
13.7.2 Microchip Technology Inc. Low-Voltage Differential Signaling (LVDS) Chip Product Portfolios and Specifications
13.7.3 Microchip Technology Inc. Low-Voltage Differential Signaling (LVDS) Chip Sales, Revenue, Price and Gross Margin (2018-2023)
13.7.4 Microchip Technology Inc. Main Business Overview
13.7.5 Microchip Technology Inc. Latest Developments
13.8 STMicroelectronics
13.8.1 STMicroelectronics Company Information
13.8.2 STMicroelectronics Low-Voltage Differential Signaling (LVDS) Chip Product Portfolios and Specifications
13.8.3 STMicroelectronics Low-Voltage Differential Signaling (LVDS) Chip Sales, Revenue, Price and Gross Margin (2018-2023)
13.8.4 STMicroelectronics Main Business Overview
13.8.5 STMicroelectronics Latest Developments
13.9 Infineon Technologies
13.9.1 Infineon Technologies Company Information
13.9.2 Infineon Technologies Low-Voltage Differential Signaling (LVDS) Chip Product Portfolios and Specifications
13.9.3 Infineon Technologies Low-Voltage Differential Signaling (LVDS) Chip Sales, Revenue, Price and Gross Margin (2018-2023)
13.9.4 Infineon Technologies Main Business Overview
13.9.5 Infineon Technologies Latest Developments
13.10 ROHM Semiconductor
13.10.1 ROHM Semiconductor Company Information
13.10.2 ROHM Semiconductor Low-Voltage Differential Signaling (LVDS) Chip Product Portfolios and Specifications
13.10.3 ROHM Semiconductor Low-Voltage Differential Signaling (LVDS) Chip Sales, Revenue, Price and Gross Margin (2018-2023)
13.10.4 ROHM Semiconductor Main Business Overview
13.10.5 ROHM Semiconductor Latest Developments
14 Research Findings and Conclusion
※参考情報 低電圧差動伝送(LVDS)チップは、高速データ伝送を可能にするために設計された特殊なインターフェース技術を用いた集積回路です。LVDSは、デジタル信号を差動形式で伝送することにより、高い信号対雑音比を実現し、データ伝送の高速化と省電力化を図ります。この技術は、通信機器や映像機器、コンピュータ内部の各種デバイス間で広く使用されており、特に高い性能と信頼性が求められる分野で重宝されています。 まずLVDSの定義について触れますが、低電圧差動伝送は通常の単端伝送と比べて、信号の送信と受信を2本の導体を用いて行います。一方の導体には信号を、もう一方の導体にはその反対の信号を送ることで、受信側で二つの信号の差分が計算されます。このアプローチにより、外部からの干渉に対して強く、データ伝送中の信号の劣化が少なくなります。また、低い電圧で動作するため、消費電力を抑えることができます。 次に、LVDSの特徴について説明します。まず、LVDSは非常に高いデータレートを実現できます。1 Gbps以上の速度に対応することが可能で、これにより高速通信が求められるアプリケーションでの使用が一般的です。次に、差動伝送を使用しているため、外部のノイズに対して非常に強い抵抗力を持っています。このため、信号の誤り率が低く、高い信号対雑音比を維持できます。また、データ伝送に使用する電力も非常に少なく、これが省エネルギーの要素となっています。さらに、LVDSは長距離伝送にも適しており、配線の長さを最大数十メートルまで延ばすことが可能です。 LVDSの種類についてですが、基本的には送信側と受信側に分けられます。送信側にはLVDSトランスミッタ(送信回路)が、受信側にはLVDSレシーバ(受信回路)が存在します。送信回路はデジタル信号を差動信号に変換し、受信回路はその差動信号を元のデジタル信号に戻します。それぞれの回路は、接続されるデバイスのプロトコルやデータレートに応じて設計されています。 LVDSは多様な用途に使用されています。1つ目の代表的な用途は、高画質な映像信号の伝送です。液晶ディスプレイやテレビなどの映像機器では、高速で大量のデータが必要とされるため、LVDSが利用されています。2つ目は、データセンターやサーバー間でのデータ通信です。ここでは、大量のデータを高速かつ効率的に伝送するためにLVDSが活用されています。また、カメラやセンサーなどの各種のデバイスとの接続にも使用され、センサーデータをリアルタイムで処理する目的でも活用されています。 関連技術としては、LVDSと同様に高スピードなデータ伝送を実現するためのいくつかの技術が存在します。その中には、メタバースやビッグデータのような大容量データを扱うシステムに向けて開発された新しいインターフェース規格も含まれます。例えば、シリアルATA(SATA)やDisplayPort、HDMIなどは、LVDSと同様に差動信号を利用しています。これらの規格もLVDSに影響を受けている部分があり、特に映像信号の伝送に関しては非常に相性が良いとされています。 さらに、LVDSの利点を活かすための周辺技術も存在します。例えば、FPGA(フィールド・プログラマブル・ゲート・アレイ)やDSP(デジタル信号プロセッサ)は、LVDS信号の処理や変換を行う際に使用されることがあります。これにより、複雑なデータ処理や制御を効率的に行うことが可能になります。 最後に、今後の展望についても触れたいと思います。LVDS技術は、高速データ伝送のニーズが高まる中で、ますます重要な役割を果たすでしょう。特に、自動運転車やIoT(モノのインターネット)に代表される新しい技術の進展に伴い、大量のデータを効率的に処理するための需要は高まっています。これにより、LVDSチップの設計や応用技術も進化していくと考えられています。 総じて、低電圧差動伝送(LVDS)チップは、高速で信号劣化が少ないデータ伝送を実現するための重要な技術であり、多くの分野での応用が期待されています。今後もその需要と技術革新は続くと予想されており、さらなる発展が期待されます。 |