1 Scope of the Report
1.1 Market Introduction
1.2 Years Considered
1.3 Research Objectives
1.4 Market Research Methodology
1.5 Research Process and Data Source
1.6 Economic Indicators
1.7 Currency Considered
1.8 Market Estimation Caveats
2 Executive Summary
2.1 World Market Overview
2.1.1 Global Lab Automation in Protein Engineering Annual Sales 2018-2029
2.1.2 World Current & Future Analysis for Lab Automation in Protein Engineering by Geographic Region, 2018, 2022 & 2029
2.1.3 World Current & Future Analysis for Lab Automation in Protein Engineering by Country/Region, 2018, 2022 & 2029
2.2 Lab Automation in Protein Engineering Segment by Type
2.2.1 Automated Liquid Handlers
2.2.2 Automated Plate Handlers
2.2.3 Robotic Arms
2.2.4 Automated Storage and Retrieval Systems
2.2.5 Others
2.3 Lab Automation in Protein Engineering Sales by Type
2.3.1 Global Lab Automation in Protein Engineering Sales Market Share by Type (2018-2023)
2.3.2 Global Lab Automation in Protein Engineering Revenue and Market Share by Type (2018-2023)
2.3.3 Global Lab Automation in Protein Engineering Sale Price by Type (2018-2023)
2.4 Lab Automation in Protein Engineering Segment by Application
2.4.1 Hospitals and Private Labs
2.4.2 Biotech and Pharma
2.4.3 Academics and Research Institutes
2.4.4 Others
2.5 Lab Automation in Protein Engineering Sales by Application
2.5.1 Global Lab Automation in Protein Engineering Sale Market Share by Application (2018-2023)
2.5.2 Global Lab Automation in Protein Engineering Revenue and Market Share by Application (2018-2023)
2.5.3 Global Lab Automation in Protein Engineering Sale Price by Application (2018-2023)
3 Global Lab Automation in Protein Engineering by Company
3.1 Global Lab Automation in Protein Engineering Breakdown Data by Company
3.1.1 Global Lab Automation in Protein Engineering Annual Sales by Company (2018-2023)
3.1.2 Global Lab Automation in Protein Engineering Sales Market Share by Company (2018-2023)
3.2 Global Lab Automation in Protein Engineering Annual Revenue by Company (2018-2023)
3.2.1 Global Lab Automation in Protein Engineering Revenue by Company (2018-2023)
3.2.2 Global Lab Automation in Protein Engineering Revenue Market Share by Company (2018-2023)
3.3 Global Lab Automation in Protein Engineering Sale Price by Company
3.4 Key Manufacturers Lab Automation in Protein Engineering Producing Area Distribution, Sales Area, Product Type
3.4.1 Key Manufacturers Lab Automation in Protein Engineering Product Location Distribution
3.4.2 Players Lab Automation in Protein Engineering Products Offered
3.5 Market Concentration Rate Analysis
3.5.1 Competition Landscape Analysis
3.5.2 Concentration Ratio (CR3, CR5 and CR10) & (2018-2023)
3.6 New Products and Potential Entrants
3.7 Mergers & Acquisitions, Expansion
4 World Historic Review for Lab Automation in Protein Engineering by Geographic Region
4.1 World Historic Lab Automation in Protein Engineering Market Size by Geographic Region (2018-2023)
4.1.1 Global Lab Automation in Protein Engineering Annual Sales by Geographic Region (2018-2023)
4.1.2 Global Lab Automation in Protein Engineering Annual Revenue by Geographic Region (2018-2023)
4.2 World Historic Lab Automation in Protein Engineering Market Size by Country/Region (2018-2023)
4.2.1 Global Lab Automation in Protein Engineering Annual Sales by Country/Region (2018-2023)
4.2.2 Global Lab Automation in Protein Engineering Annual Revenue by Country/Region (2018-2023)
4.3 Americas Lab Automation in Protein Engineering Sales Growth
4.4 APAC Lab Automation in Protein Engineering Sales Growth
4.5 Europe Lab Automation in Protein Engineering Sales Growth
4.6 Middle East & Africa Lab Automation in Protein Engineering Sales Growth
5 Americas
5.1 Americas Lab Automation in Protein Engineering Sales by Country
5.1.1 Americas Lab Automation in Protein Engineering Sales by Country (2018-2023)
5.1.2 Americas Lab Automation in Protein Engineering Revenue by Country (2018-2023)
5.2 Americas Lab Automation in Protein Engineering Sales by Type
5.3 Americas Lab Automation in Protein Engineering Sales by Application
5.4 United States
5.5 Canada
5.6 Mexico
5.7 Brazil
6 APAC
6.1 APAC Lab Automation in Protein Engineering Sales by Region
6.1.1 APAC Lab Automation in Protein Engineering Sales by Region (2018-2023)
6.1.2 APAC Lab Automation in Protein Engineering Revenue by Region (2018-2023)
6.2 APAC Lab Automation in Protein Engineering Sales by Type
6.3 APAC Lab Automation in Protein Engineering Sales by Application
6.4 China
6.5 Japan
6.6 South Korea
6.7 Southeast Asia
6.8 India
6.9 Australia
6.10 China Taiwan
7 Europe
7.1 Europe Lab Automation in Protein Engineering by Country
7.1.1 Europe Lab Automation in Protein Engineering Sales by Country (2018-2023)
7.1.2 Europe Lab Automation in Protein Engineering Revenue by Country (2018-2023)
7.2 Europe Lab Automation in Protein Engineering Sales by Type
7.3 Europe Lab Automation in Protein Engineering Sales by Application
7.4 Germany
7.5 France
7.6 UK
7.7 Italy
7.8 Russia
8 Middle East & Africa
8.1 Middle East & Africa Lab Automation in Protein Engineering by Country
8.1.1 Middle East & Africa Lab Automation in Protein Engineering Sales by Country (2018-2023)
8.1.2 Middle East & Africa Lab Automation in Protein Engineering Revenue by Country (2018-2023)
8.2 Middle East & Africa Lab Automation in Protein Engineering Sales by Type
8.3 Middle East & Africa Lab Automation in Protein Engineering Sales by Application
8.4 Egypt
8.5 South Africa
8.6 Israel
8.7 Turkey
8.8 GCC Countries
9 Market Drivers, Challenges and Trends
9.1 Market Drivers & Growth Opportunities
9.2 Market Challenges & Risks
9.3 Industry Trends
10 Manufacturing Cost Structure Analysis
10.1 Raw Material and Suppliers
10.2 Manufacturing Cost Structure Analysis of Lab Automation in Protein Engineering
10.3 Manufacturing Process Analysis of Lab Automation in Protein Engineering
10.4 Industry Chain Structure of Lab Automation in Protein Engineering
11 Marketing, Distributors and Customer
11.1 Sales Channel
11.1.1 Direct Channels
11.1.2 Indirect Channels
11.2 Lab Automation in Protein Engineering Distributors
11.3 Lab Automation in Protein Engineering Customer
12 World Forecast Review for Lab Automation in Protein Engineering by Geographic Region
12.1 Global Lab Automation in Protein Engineering Market Size Forecast by Region
12.1.1 Global Lab Automation in Protein Engineering Forecast by Region (2024-2029)
12.1.2 Global Lab Automation in Protein Engineering Annual Revenue Forecast by Region (2024-2029)
12.2 Americas Forecast by Country
12.3 APAC Forecast by Region
12.4 Europe Forecast by Country
12.5 Middle East & Africa Forecast by Country
12.6 Global Lab Automation in Protein Engineering Forecast by Type
12.7 Global Lab Automation in Protein Engineering Forecast by Application
13 Key Players Analysis
13.1 Thermo Fisher Scientific
13.1.1 Thermo Fisher Scientific Company Information
13.1.2 Thermo Fisher Scientific Lab Automation in Protein Engineering Product Portfolios and Specifications
13.1.3 Thermo Fisher Scientific Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.1.4 Thermo Fisher Scientific Main Business Overview
13.1.5 Thermo Fisher Scientific Latest Developments
13.2 Danaher
13.2.1 Danaher Company Information
13.2.2 Danaher Lab Automation in Protein Engineering Product Portfolios and Specifications
13.2.3 Danaher Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.2.4 Danaher Main Business Overview
13.2.5 Danaher Latest Developments
13.3 Hudson Robotics
13.3.1 Hudson Robotics Company Information
13.3.2 Hudson Robotics Lab Automation in Protein Engineering Product Portfolios and Specifications
13.3.3 Hudson Robotics Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.3.4 Hudson Robotics Main Business Overview
13.3.5 Hudson Robotics Latest Developments
13.4 Becton, Dickinson and Company
13.4.1 Becton, Dickinson and Company Company Information
13.4.2 Becton, Dickinson and Company Lab Automation in Protein Engineering Product Portfolios and Specifications
13.4.3 Becton, Dickinson and Company Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.4.4 Becton, Dickinson and Company Main Business Overview
13.4.5 Becton, Dickinson and Company Latest Developments
13.5 Synchron Lab Automation
13.5.1 Synchron Lab Automation Company Information
13.5.2 Synchron Lab Automation Lab Automation in Protein Engineering Product Portfolios and Specifications
13.5.3 Synchron Lab Automation Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.5.4 Synchron Lab Automation Main Business Overview
13.5.5 Synchron Lab Automation Latest Developments
13.6 Agilent Technologies
13.6.1 Agilent Technologies Company Information
13.6.2 Agilent Technologies Lab Automation in Protein Engineering Product Portfolios and Specifications
13.6.3 Agilent Technologies Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.6.4 Agilent Technologies Main Business Overview
13.6.5 Agilent Technologies Latest Developments
13.7 Siemens Healthineers
13.7.1 Siemens Healthineers Company Information
13.7.2 Siemens Healthineers Lab Automation in Protein Engineering Product Portfolios and Specifications
13.7.3 Siemens Healthineers Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.7.4 Siemens Healthineers Main Business Overview
13.7.5 Siemens Healthineers Latest Developments
13.8 Tecan Group Ltd
13.8.1 Tecan Group Ltd Company Information
13.8.2 Tecan Group Ltd Lab Automation in Protein Engineering Product Portfolios and Specifications
13.8.3 Tecan Group Ltd Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.8.4 Tecan Group Ltd Main Business Overview
13.8.5 Tecan Group Ltd Latest Developments
13.9 PerkinElmer
13.9.1 PerkinElmer Company Information
13.9.2 PerkinElmer Lab Automation in Protein Engineering Product Portfolios and Specifications
13.9.3 PerkinElmer Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.9.4 PerkinElmer Main Business Overview
13.9.5 PerkinElmer Latest Developments
13.10 Bio-Rad
13.10.1 Bio-Rad Company Information
13.10.2 Bio-Rad Lab Automation in Protein Engineering Product Portfolios and Specifications
13.10.3 Bio-Rad Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.10.4 Bio-Rad Main Business Overview
13.10.5 Bio-Rad Latest Developments
13.11 Roche
13.11.1 Roche Company Information
13.11.2 Roche Lab Automation in Protein Engineering Product Portfolios and Specifications
13.11.3 Roche Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.11.4 Roche Main Business Overview
13.11.5 Roche Latest Developments
13.12 Shimadzu Corporation
13.12.1 Shimadzu Corporation Company Information
13.12.2 Shimadzu Corporation Lab Automation in Protein Engineering Product Portfolios and Specifications
13.12.3 Shimadzu Corporation Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.12.4 Shimadzu Corporation Main Business Overview
13.12.5 Shimadzu Corporation Latest Developments
13.13 Aurora Biomed
13.13.1 Aurora Biomed Company Information
13.13.2 Aurora Biomed Lab Automation in Protein Engineering Product Portfolios and Specifications
13.13.3 Aurora Biomed Lab Automation in Protein Engineering Sales, Revenue, Price and Gross Margin (2018-2023)
13.13.4 Aurora Biomed Main Business Overview
13.13.5 Aurora Biomed Latest Developments
14 Research Findings and Conclusion
※参考情報 タンパク質工学における研究室自動化は、タンパク質の設計、合成、解析を効率化するために、さまざまな技術と機器を導入して実験プロセスを自動化することを指します。この自動化は、研究者の手作業によるエラーを軽減し、再現性を向上させるだけでなく、スループット(処理能力)の向上にも寄与します。 近年、データの収集と分析のニーズが高まる中で、研究室自動化はますます重要な役割を擁しています。その目的は、より迅速かつ効率的に新しいタンパク質を開発し、それらの機能を理解することにあります。研究室自動化は、さまざまな技術によって実現されており、これにはロボティクス、人工知能(AI)、機械学習、そして高スループットスクリーニング(HTS)などが含まれます。 研究室自動化の特徴として、まずは高い精度と再現性を挙げることができます。これにより、特に微量のサンプルを扱う際に、結果の信頼性も高まります。次に、処理速度の向上も重要な特徴です。自動化されたプロセスでは、薬剤の調製や反応条件の設定が迅速に行え、多くのサンプルを同時に扱うことが可能となります。また、作業の標準化が進むことで、ルーチン作業におけるヒューマンエラーを減少させ、結果として研究の進行をスムーズにします。 研究室自動化には主にいくつかの種類があります。まず、高スループットスクリーニング(HTS)は、数千から数万の化合物を同時に評価するための手法であり、ターゲットタンパク質の活性を迅速に特定するのに非常に役立ちます。次に、ロボティクスを利用した液体ハンドリングシステムがあります。これにより、試薬の分配やサンプルの調製、さらには反応条件の設定を自動で行うことができ、時間短縮とエラーの軽減を実現します。 また、インフォマティクスと組み合わせた自動化も重要です。AIおよび機械学習を用いることで、実験データを解析し、最適な条件を導き出すことが可能になります。これにより、従来の経験則に基づくアプローチから脱却し、データに基づいた決定を行うことができます。 用途としては、創薬の初期段階における候補物質のスクリーニングや、タンパク質の変異体を用いた機能解析、新しい酵素や抗体の設計などが挙げられます。特に、機能性蛋白質のデザインにおいては、特定の機能を持つタンパク質を迅速に生成し、それらの性質を評価することで、効率的な研究が進むことが期待されます。さらに、蛋白質工学における自動化の進展は、バイオ研究だけでなく、食品産業や環境保全に関連した応用にも広がっています。 関連技術としては、セラミック固定化技術や、フローシステム、マイクロ流体デバイスなどがあります。これらの技術を組み合わせることで、より効率的で卓越したタンパク質工学のプロセスが実現されています。例えば、マイクロ流体デバイスは少量の試薬で反応を行えるため、コストも削減できる上に、迅速なプロトタイプ作成が可能となります。 また、研究室自動化においては、データ管理と解析のインフラも不可欠です。生物情報学を活用したデータベースの構築や、ビッグデータの解析技術を駆使することで、大量の実験結果を体系的に管理し、結果の意味を理解する助けとなります。これによって、今後の研究開発に向けての指針が得られ、研究の方向性を明確にすることができます。 今後の展望としては、更なる自動化とその高精度化、AI技術の進化により、ますます研究の効率化が図られると期待されています。特に、機械学習技術の進展により、過去のデータを基にした予測モデルが構築され、そのモデルを使った自動化実験が可能になるでしょう。こうした取り組みは、これまでの研究スタイルを大きく変革し、タンパク質工学の新たな展開を促進することが見込まれています。 結論として、タンパク質工学における研究室自動化は、研究の効率性向上、再現性の確保、そしてデータの活用を通じて、今後の科学技術に大きな影響を与える分野となるでしょう。革新的な技術の導入によって、新しいタンパク質の発見やその機能解析が進むことで、多様な産業や医療への貢献が期待されています。タンパク質工学の自動化は、科学の未来を切り開く重要な手段となることでしょう。 |