世界の無細胞タンパク質発現市場予測2023年-2028年

【英語タイトル】Cell-free Protein Expression Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023-2028

IMARCが出版した調査資料(IMARC23AP140)・商品コード:IMARC23AP140
・発行会社(調査会社):IMARC
・発行日:2023年3月2日
   最新版(2025年又は2026年)版があります。お問い合わせください。
・ページ数:145
・レポート言語:英語
・レポート形式:PDF
・納品方法:Eメール
・調査対象地域:グローバル
・産業分野:バイオ
◆販売価格オプション(消費税別)
Single UserUSD3,999 ⇒換算¥615,846見積依頼/購入/質問フォーム
Five UserUSD4,999 ⇒換算¥769,846見積依頼/購入/質問フォーム
EnterprisewideUSD5,999 ⇒換算¥923,846見積依頼/購入/質問フォーム
販売価格オプションの説明
※お支払金額:換算金額(日本円)+消費税
※納期:即日〜2営業日(3日以上かかる場合は別途表記又はご連絡)
※お支払方法:納品日+5日以内に請求書を発行・送付(請求書発行日より2ヶ月以内に銀行振込、振込先:三菱UFJ銀行/H&Iグローバルリサーチ株式会社、支払期限と方法は調整可能)
❖ レポートの概要 ❖

IMARC社の本調査レポートでは、2022年に246.5百万ドルであった世界の無細胞タンパク質発現市場規模が、2028年までに323.8百万ドルに拡大し、予測期間中にCAGR7.61%で成長すると予想しています。本書は、無細胞タンパク質発現の世界市場を調査・分析し、序論、範囲・調査手法、エグゼクティブサマリー、イントロダクション、製品別(発現システム、試薬)分析、方法別(転写・翻訳、翻訳システム)分析、用途別(酵素エンジニアリング、ハイスループット生産、タンパク質標識、タンパク質-タンパク質相互作用、タンパク質精製)分析、エンドユーザー別(医薬品・バイオテクノロジー企業、学術・研究機関、その他)分析、地域別(北米、アジア太平洋、ヨーロッパ、中南米、中東・アフリカ)分析、SWOT分析、バリューチェーン分析、ポーターズファイブフォース分析、価格分析、競争状況などの項目を整理しています。また、本書には、Bioneer Corporation、biotechrabbit GmbH、Cambridge Isotope Laboratories Inc. (Otsuka Pharmaceutical Co. Ltd.)、CellFree Sciences Co. Ltd.、Cube Biotech GmbH、GeneCopoeia Inc.、Jena Bioscience GmbH、Merck KGaA、New England Biolabs、Promega Corporation、Takara Bio Inc. and Thermo Fisher Scientific Inc.などの企業情報が含まれています。
・序論
・範囲・調査手法
・エグゼクティブサマリー
・イントロダクション
・世界の無細胞タンパク質発現市場規模:製品別
- 発現システムの市場規模
- 試薬の市場規模
・世界の無細胞タンパク質発現市場規模:方法別
- 転写・翻訳における市場規模
- 翻訳システムにおける市場規模
・世界の無細胞タンパク質発現市場規模:用途別
- 酵素エンジニアリングにおける市場規模
- ハイスループット生産における市場規模
- タンパク質標識における市場規模
- タンパク質-タンパク質相互作用における市場規模
- タンパク質精製における市場規模
・世界の無細胞タンパク質発現市場規模:エンドユーザー別
- 医薬品・バイオテクノロジー企業における市場規模
- 学術・研究機関における市場規模
- その他における市場規模
・世界の無細胞タンパク質発現市場規模:地域別
- 北米の無細胞タンパク質発現市場規模
- アジア太平洋の無細胞タンパク質発現市場規模
- ヨーロッパの無細胞タンパク質発現市場規模
- 中南米の無細胞タンパク質発現市場規模
- 中東・アフリカの無細胞タンパク質発現市場規模
・SWOT分析
・バリューチェーン分析
・ポーターズファイブフォース分析
・価格分析
・競争状況

Market Overview:
The global cell-free protein expression market size reached US$ 246.5 Million in 2022. Looking forward, IMARC Group expects the market to reach US$ 323.8 Million by 2028, exhibiting a growth rate (CAGR) of 7.61% during 2023-2028.

Cell-free protein expression (CFPE) refers to the production of desired recombinant proteins in solution using biomolecular translation machinery extracted from cells. It can be carried out using different cell lysates, such as E. coli, rabbit reticulocytes, wheat germ, insect cells, and mammalian cell-free protein expression systems. They are widely used in enzyme engineering, protein labeling, protein purification, protein-protein interaction, and high throughput production of mutants. CFPE is also used for analyzing components needed for protein stability, degradation, and folding. As compared to cell-based protein expression, cell-free protein expression is time efficient and convenient, allows the incorporation of non-natural amino acids, and provides enhanced stability and specificity.

Cell-free Protein Expression Market Trends:
The rapid advancement in biological sciences is one of the key factors driving the market growth. Cell-free protein expression is extensively used in the expansion of genetic code, assembly of viruses, and the synthesis of recombinant proteins for various biomolecular processes. Furthermore, the increasing technique utilization in the pharmaceutical industry for developing protein-based therapeutics, such as antibodies, antimicrobials, and cytokines, for treating cancer and infectious diseases is acting as another growth-inducing factor. Additionally, the integration of machine learning (ML) algorithms to improve protein production yield by optimizing the system for efficient prototyping and high-throughput experimentation is providing an impetus to market growth. Moreover, the introduction of novel processes to produce complex prokaryotic and eukaryotic proteins using a continuous-exchange cell-free (CECF) protein synthesis system is creating a positive outlook for the market. Other factors, including the widespread adoption of cell-free methods for biomanufacturing and prototyping, extensive research and development (R&D) activities in proteomics and genomics, and the rising adoption in the healthcare industry for diagnostic applications, such as pathogen sensing, inflammatory response, and personalized medicine, are supporting drive the market growth.

Key Market Segmentation:
IMARC Group provides an analysis of the key trends in each sub-segment of the global cell-free protein expression market report, along with forecasts at the global, regional and country level from 2023-2028. Our report has categorized the market based on product, method, application and end user.

Breakup by Product:
Expression Systems
E. coli Cell-free Protein Expression System
Wheat Germ Cell-free Protein Expression System
Rabbit Reticulocytes Cell-free Protein Expression System
Insect Cells Cell-free Protein Expression System
Human Cell-free Protein Expression System
Others
Reagents

Breakup by Method:
Transcription and Translation Systems
Translation Systems

Breakup by Application:
Enzyme Engineering
High Throughput Production
Protein Labeling
Protein-Protein Interaction
Protein Purification

Breakup by End User:
Pharmaceutical and Biotechnology Companies
Academic and Research Institutes
Others

Breakup by Region:
North America
United States
Canada
Asia-Pacific
China
Japan
India
South Korea
Australia
Indonesia
Others
Europe
Germany
France
United Kingdom
Italy
Spain
Russia
Others
Latin America
Brazil
Mexico
Others
Middle East and Africa

Competitive Landscape:
The competitive landscape of the industry has also been examined along with the profiles of the key players being Bioneer Corporation, biotechrabbit GmbH, Cambridge Isotope Laboratories Inc. (Otsuka Pharmaceutical Co. Ltd.), CellFree Sciences Co. Ltd., Cube Biotech GmbH, GeneCopoeia Inc., Jena Bioscience GmbH, Merck KGaA, New England Biolabs, Promega Corporation, Takara Bio Inc. and Thermo Fisher Scientific Inc.

Key Questions Answered in This Report:
How has the global cell-free protein expression market performed so far and how will it perform in the coming years?
What has been the impact of COVID-19 on the global cell-free protein expression market?
What are the key regional markets?
What is the breakup of the market based on the product?
What is the breakup of the market based on the method?
What is the breakup of the market based on the application?
What is the breakup of the market based on the end user?
What are the various stages in the value chain of the industry?
What are the key driving factors and challenges in the industry?
What is the structure of the global cell-free protein expression market and who are the key players?
What is the degree of competition in the industry?

グローバル市場調査レポート販売サイトのwww.marketreport.jpです。

❖ レポートの目次 ❖

1 Preface
2 Scope and Methodology
2.1 Objectives of the Study
2.2 Stakeholders
2.3 Data Sources
2.3.1 Primary Sources
2.3.2 Secondary Sources
2.4 Market Estimation
2.4.1 Bottom-Up Approach
2.4.2 Top-Down Approach
2.5 Forecasting Methodology
3 Executive Summary
4 Introduction
4.1 Overview
4.2 Key Industry Trends
5 Global Cell-free Protein Expression Market
5.1 Market Overview
5.2 Market Performance
5.3 Impact of COVID-19
5.4 Market Forecast
6 Market Breakup by Product
6.1 Expression Systems
6.1.1 Market Trends
6.1.2 Key Segments
6.1.2.1 E. coli Cell-free Protein Expression System
6.1.2.2 Wheat Germ Cell-free Protein Expression System
6.1.2.3 Rabbit Reticulocytes Cell-free Protein Expression System
6.1.2.4 Insect Cells Cell-free Protein Expression System
6.1.2.5 Human Cell-free Protein Expression System
6.1.2.6 Others
6.1.3 Market Forecast
6.2 Reagents
6.2.1 Market Trends
6.2.2 Market Forecast
7 Market Breakup by Method
7.1 Transcription and Translation Systems
7.1.1 Market Trends
7.1.2 Market Forecast
7.2 Translation Systems
7.2.1 Market Trends
7.2.2 Market Forecast
8 Market Breakup by Application
8.1 Enzyme Engineering
8.1.1 Market Trends
8.1.2 Market Forecast
8.2 High Throughput Production
8.2.1 Market Trends
8.2.2 Market Forecast
8.3 Protein Labeling
8.3.1 Market Trends
8.3.2 Market Forecast
8.4 Protein-Protein Interaction
8.4.1 Market Trends
8.4.2 Market Forecast
8.5 Protein Purification
8.5.1 Market Trends
8.5.2 Market Forecast
9 Market Breakup by End User
9.1 Pharmaceutical and Biotechnology Companies
9.1.1 Market Trends
9.1.2 Market Forecast
9.2 Academic and Research Institutes
9.2.1 Market Trends
9.2.2 Market Forecast
9.3 Others
9.3.1 Market Trends
9.3.2 Market Forecast
10 Market Breakup by Region
10.1 North America
10.1.1 United States
10.1.1.1 Market Trends
10.1.1.2 Market Forecast
10.1.2 Canada
10.1.2.1 Market Trends
10.1.2.2 Market Forecast
10.2 Asia-Pacific
10.2.1 China
10.2.1.1 Market Trends
10.2.1.2 Market Forecast
10.2.2 Japan
10.2.2.1 Market Trends
10.2.2.2 Market Forecast
10.2.3 India
10.2.3.1 Market Trends
10.2.3.2 Market Forecast
10.2.4 South Korea
10.2.4.1 Market Trends
10.2.4.2 Market Forecast
10.2.5 Australia
10.2.5.1 Market Trends
10.2.5.2 Market Forecast
10.2.6 Indonesia
10.2.6.1 Market Trends
10.2.6.2 Market Forecast
10.2.7 Others
10.2.7.1 Market Trends
10.2.7.2 Market Forecast
10.3 Europe
10.3.1 Germany
10.3.1.1 Market Trends
10.3.1.2 Market Forecast
10.3.2 France
10.3.2.1 Market Trends
10.3.2.2 Market Forecast
10.3.3 United Kingdom
10.3.3.1 Market Trends
10.3.3.2 Market Forecast
10.3.4 Italy
10.3.4.1 Market Trends
10.3.4.2 Market Forecast
10.3.5 Spain
10.3.5.1 Market Trends
10.3.5.2 Market Forecast
10.3.6 Russia
10.3.6.1 Market Trends
10.3.6.2 Market Forecast
10.3.7 Others
10.3.7.1 Market Trends
10.3.7.2 Market Forecast
10.4 Latin America
10.4.1 Brazil
10.4.1.1 Market Trends
10.4.1.2 Market Forecast
10.4.2 Mexico
10.4.2.1 Market Trends
10.4.2.2 Market Forecast
10.4.3 Others
10.4.3.1 Market Trends
10.4.3.2 Market Forecast
10.5 Middle East and Africa
10.5.1 Market Trends
10.5.2 Market Breakup by Country
10.5.3 Market Forecast
11 SWOT Analysis
11.1 Overview
11.2 Strengths
11.3 Weaknesses
11.4 Opportunities
11.5 Threats
12 Value Chain Analysis
13 Porters Five Forces Analysis
13.1 Overview
13.2 Bargaining Power of Buyers
13.3 Bargaining Power of Suppliers
13.4 Degree of Competition
13.5 Threat of New Entrants
13.6 Threat of Substitutes
14 Price Analysis
15 Competitive Landscape
15.1 Market Structure
15.2 Key Players
15.3 Profiles of Key Players
15.3.1 Bioneer Corporation
15.3.1.1 Company Overview
15.3.1.2 Product Portfolio
15.3.1.3 Financials
15.3.2 biotechrabbit GmbH
15.3.2.1 Company Overview
15.3.2.2 Product Portfolio
15.3.3 Cambridge Isotope Laboratories Inc. (Otsuka Pharmaceutical Co. Ltd.)
15.3.3.1 Company Overview
15.3.3.2 Product Portfolio
15.3.4 CellFree Sciences Co. Ltd.
15.3.4.1 Company Overview
15.3.4.2 Product Portfolio
15.3.5 Cube Biotech GmbH
15.3.5.1 Company Overview
15.3.5.2 Product Portfolio
15.3.6 GeneCopoeia Inc.
15.3.6.1 Company Overview
15.3.6.2 Product Portfolio
15.3.7 Jena Bioscience GmbH
15.3.7.1 Company Overview
15.3.7.2 Product Portfolio
15.3.8 Merck KGaA
15.3.8.1 Company Overview
15.3.8.2 Product Portfolio
15.3.8.3 Financials
15.3.8.4 SWOT Analysis
15.3.9 New England Biolabs
15.3.9.1 Company Overview
15.3.9.2 Product Portfolio
15.3.10 Promega Corporation
15.3.10.1 Company Overview
15.3.10.2 Product Portfolio
15.3.11 Takara Bio Inc.
15.3.11.1 Company Overview
15.3.11.2 Product Portfolio
15.3.11.3 Financials
15.3.12 Thermo Fisher Scientific Inc.
15.3.12.1 Company Overview
15.3.12.2 Product Portfolio
15.3.12.3 Financials
15.3.12.4 SWOT Analysis


※参考情報

無細胞タンパク質発現は、細胞を用いずに当該タンパク質を合成する技術です。この方法は、再組換えDNA技術を用いて遺伝子を発現させ、その後、細胞外でタンパク質を合成します。無細胞発現系は、特に例えば大腸菌や酵母、昆虫細胞、哺乳類細胞などの宿主細胞を使用せずにタンパク質を得ることができるため、迅速かつ効率的にタンパク質を得られるという利点があります。
この技術には、主に二つのタイプがあります。一つは、リボソームを使用した合成であり、メッセンジャーRNA(mRNA)を翻訳してタンパク質を合成する方法です。もう一つは、ビッグ・リファインメント (Big Refinement) という方法で、インビトロ(in vitro)での反応系を用いて、細胞壁や膜の問題を回避しながら精製されたタンパク質を合成します。これにより、生成されるタンパク質は、自然なタグや機能を持つことが可能になります。

無細胞タンパク質発現の用途は幅広く、基礎研究から応用研究まで、さまざまな分野で活用されています。特に、医薬品開発やバイオ技術においては、迅速なタンパク質合成が求められます。例えば、新薬のスクリーニングや、抗体やワクチンの開発において、無細胞システムは迅速な反応を可能にします。また、無細胞系を用いることで、毒性試験を行う際の細胞への影響を軽減し、よりスムーズに実験を進められることも大きな利点です。

さらに、無細胞タンパク質発現系は、特定の化合物を用いることで、様々な修飾を組み込むことが可能です。例えば、ホスホリル化、グリコシル化、さらには他の化学的修飾も行え、その結果として、天然のタンパク質と違った特性を持つ人工タンパク質を得ることができます。これにより、構造解析や機能解析が容易になり、研究が進展します。

関連技術としては、合成生物学やバイオテクノロジーの進展が挙げられます。これらの分野では、無細胞のシステムと遺伝子工学を組み合わせて、より高効率で精度の高いタンパク質の合成を目指しています。また、スクリーニング技術やマイクロ流体デバイスとの統合も進み、より効率的に望ましいタンパク質を早期に発見する手法が開発されています。

無細胞タンパク質発現は、遺伝子の合成から始まり、翻訳、折りたたみ、そして最終的には機能を持つタンパク質の生成に至るまでのプロセスを効率化するための重要な手法です。今後も、さまざまな分野での革新を促すために、この技術はますます重要な役割を果たすことでしょう。研究者たちは、無細胞タンパク質発現のさらなる最適化と応用の可能性を探求し続けており、これにより新たな医療や産業でのイノベーションが期待されています。


★調査レポート[世界の無細胞タンパク質発現市場予測2023年-2028年] (コード:IMARC23AP140)販売に関する免責事項を必ずご確認ください。
★調査レポート[世界の無細胞タンパク質発現市場予測2023年-2028年]についてメールでお問い合わせ


◆H&Iグローバルリサーチのお客様(例)◆